A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512
Offset: 0
Examples
Triangle begins as: n\k [0] [1] [2] [3] [4] [5] [6] ... [0] 1; [1] 2, 2; [2] 4, 6, 4; [3] 8, 16, 16, 8; [4] 16, 40, 52, 40, 16; [5] 32, 96, 152, 152, 96, 32; [6] 64, 224, 416, 504, 416, 224, 64; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A059474:= func< n,k | (&+[(-1)^j*2^(n-j)*Binomial(n-k,j)*Binomial(n-j,n-k): j in [0..n-k]]) >; [A059474(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 21 2023
-
Maple
read transforms; SERIES2(1/(1-2*z-2*w+2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12); # Alternative T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2): for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
-
Mathematica
Table[(-1)^k*2^n*JacobiP[k, -n-1,0,0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 04 2017; May 21 2023 *)
-
SageMath
def A059474(n,k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2)) flatten([[A059474(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 21 2023
Formula
G.f.: 1/(1 - 2*z - 2*w + 2*z*w).
T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n).
T(n, 0) = T(n, n) = A000079(n).
T(2*n, n) = A084773(n).
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - Peter Luschny, Nov 26 2021
From G. C. Greubel, May 21 2023: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = A007070(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
T(n, 2) = 4*A049611(n-1). (End)
Comments