cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2001; revised Jun 12 2005

Keywords

Comments

Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1.

Examples

			Triangle begins as:
   n\k [0]  [1]  [2]  [3]  [4]  [5]  [6] ...
  [0]   1;
  [1]   2,   2;
  [2]   4,   6,   4;
  [3]   8,  16,  16,   8;
  [4]  16,  40,  52,  40,  16;
  [5]  32,  96, 152, 152,  96,  32;
  [6]  64, 224, 416, 504, 416, 224,  64;
       ...
		

Crossrefs

See A059576 for a similar triangle.

Programs

  • Magma
    A059474:= func< n,k | (&+[(-1)^j*2^(n-j)*Binomial(n-k,j)*Binomial(n-j,n-k): j in [0..n-k]]) >;
    [A059474(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 21 2023
    
  • Maple
    read transforms; SERIES2(1/(1-2*z-2*w+2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12);
    # Alternative
    T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2):
    for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
  • Mathematica
    Table[(-1)^k*2^n*JacobiP[k, -n-1,0,0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 04 2017; May 21 2023 *)
  • SageMath
    def A059474(n,k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2))
    flatten([[A059474(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 21 2023

Formula

G.f.: 1/(1 - 2*z - 2*w + 2*z*w).
T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n).
T(n, 0) = T(n, n) = A000079(n).
T(2*n, n) = A084773(n).
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - Peter Luschny, Nov 26 2021
From G. C. Greubel, May 21 2023: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = A007070(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
T(n, 1) = A057711(n+1) = 2*A001792(n) - [n=0].
T(n, 2) = 4*A049611(n-1). (End)