A059500 Primes p such that both q=(p-1)/2 and 2p + 1 = 4q + 3 are composite numbers. Intersection of A059456 and A053176.
13, 17, 19, 31, 37, 43, 61, 67, 71, 73, 79, 97, 101, 103, 109, 127, 137, 139, 149, 151, 157, 163, 181, 193, 197, 199, 211, 223, 229, 241, 257, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 349, 353, 367, 373, 379, 389, 397, 401, 409, 421, 433, 439, 449
Offset: 1
Keywords
Examples
Prime p=17 is here because both 35 and 8 are composite numbers. Such primes fall "out of" any Cunningham chain of first kind (or generate Cunningham chains of 0-length).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from _Reinhard Zumkeller)
- C. K. Caldwell, Cunningham Chains
Crossrefs
Programs
-
Mathematica
Complement[Prime[Range[100]], Select[Prime[Range[100]], PrimeQ[2# + 1] &], Select[Prime[Range[100]], PrimeQ[(# - 1)/2] &]] (Delarte) Select[Prime[Range[100]],!PrimeQ[q=2#+1]&&!PrimeQ[(#-1)/2]&] (* Zak Seidov, Mar 09 2013 *)
-
PARI
is(n)=isprime(n)&&!isprime(n\2)&&!isprime(2*n+1) \\ Charles R Greathouse IV, Jan 16 2013
Formula
a(n) ~ n log n. - Charles R Greathouse IV, Jan 16 2013
Comments