A059526 Decimal expansion of real part of solution to z = log z.
3, 1, 8, 1, 3, 1, 5, 0, 5, 2, 0, 4, 7, 6, 4, 1, 3, 5, 3, 1, 2, 6, 5, 4, 2, 5, 1, 5, 8, 7, 6, 6, 4, 5, 1, 7, 2, 0, 3, 5, 1, 7, 6, 1, 3, 8, 7, 1, 3, 9, 9, 8, 6, 6, 9, 2, 2, 3, 7, 8, 6, 0, 6, 2, 2, 9, 4, 1, 3, 8, 7, 1, 5, 5, 7, 6, 2, 6, 9, 7, 9, 2, 3, 2, 4, 8, 6, 3, 8, 4, 8, 9, 8, 6, 3, 6, 1, 6, 3, 8, 4, 4, 2, 1, 4
Offset: 0
Examples
z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Stanislav Sykora, Fixed points of the mappings exp(z) and -exp(z) in C, 2016.
- Wolfram Research, FixedPoint
Programs
-
Mathematica
RealDigits[ Re[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]] RealDigits[ N[ Re[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *) RealDigits[Re[x/.FindRoot[x-Log[x]==0,{x,.5,1},WorkingPrecision->200]],10,120][[1]] (* Harvey P. Dale, Aug 07 2022 *)
-
PARI
z=I;for(k=1,16000,z=log(z));real(z) \\ Stanislav Sykora, Jun 07 2015 \\ Using realprecision \p 2010
-
PARI
z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); real(z) \\ Jeremy Tan, Sep 23 2017
Extensions
More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002
Comments