cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059593 Number of degree-n permutations of order exactly 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 24, 144, 504, 1344, 3024, 78624, 809424, 4809024, 20787624, 72696624, 1961583624, 28478346624, 238536558624, 1425925698624, 6764765838624, 189239120970624, 3500701266525624, 37764092547420624, 288099608198025624
Offset: 0

Views

Author

Henry Bottomley, Jan 26 2001

Keywords

Comments

The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) =a(n-1) + (1+a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1 to floor[n/p]} n!/(j!*(n-p*j)!*(p^j)).

Crossrefs

Column k=5 of A057731. - Alois P. Heinz, Feb 16 2013

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<5, 0, a(n-1)+(1+a(n-5))*(n-1)!/(n-5)!)
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2014
  • Mathematica
    Table[Sum[n!/(j!*(n-5*j)!*5^j), {j,1,Floor[n/5]}], {n,0,25}] (* G. C. Greubel, May 14 2019 *)
  • PARI
    {a(n) = sum(j=1,floor(n/5), n!/(j!*(n-5*j)!*5^j))}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^5/5) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

a(n) = a(n - 1) + (1 + a(n - 5))*(n - 1)(n - 2)(n - 3)(n - 4).
a(n) = Sum_{j=1..floor(n/5)} n!/(j!*(n - 5*j)!*(5^j)).
From G. C. Greubel, May 14 2019: (Start)
a(n) = A052501(n) - 1.
E.g.f.: exp(x + x^5/5) - exp(x). (End)