cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059598 Tenth column (m=9) of convolution triangle A059594(n,m).

Original entry on oeis.org

1, 10, 65, 320, 1320, 4752, 15400, 45760, 126500, 328680, 809380, 1901120, 4282200, 9289840, 19482200, 39619008, 78337930, 150954980, 284060810, 522920640, 943206264, 1669294000, 2902420600, 4963400000
Offset: 0

Views

Author

Wolfdieter Lang, Feb 02 2001

Keywords

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x))^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-35,20,195,-498,-15,1800,-2205,-2150,7001,-2260,-9785,10830,4845,-15504,4845,10830,-9785,-2260,7001,-2150,-2205,1800,-15,-498,195,20,-35,10,-1},{1,10,65,320,1320,4752,15400,45760,126500,328680,809380,1901120,4282200,9289840,19482200,39619008,78337930,150954980,284060810,522920640,943206264,1669294000,2902420600,4963400000,8356661300,13865072520,22688862900,36646948800,58465921800,92190872400},30] (* Harvey P. Dale, Oct 20 2021 *)

Formula

G.f.: 1/((1-x^2)*(1-x))^10.
a(2*k)= binomial(n+14, 14)*(2*n+15)*(8*n^4+240*n^3+2185*n^2+5775*n+2907)/(19*9*17*15);
a(2*k+1)= binomial(k+15, 15)*2*(8*k^4+256*k^3+2767*k^2+11504*k+14535)/(17*9*19), k >= 0