A059608 Numbers k such that 2^k - 5 is prime.
3, 4, 6, 8, 10, 12, 18, 20, 26, 32, 36, 56, 66, 118, 130, 150, 166, 206, 226, 550, 706, 810, 1136, 1228, 1818, 2368, 2400, 3128, 4532, 5112, 8492, 16028, 16386, 17392, 18582, 21986, 24292, 27618, 30918, 32762, 48212, 120440, 183632, 316140, 364982, 414032, 533350, 595122
Offset: 1
Keywords
Examples
k = 10: 2^10 - 5 = 1019 is prime. k = 20: 2^20 - 5 = 1048571 is prime.
Links
- Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
- Jon Grantham and Andrew Granville, Fibonacci primes, primes of the form 2^n-k and beyond, arXiv:2307.07894 [math.NT], 2023.
- Henri Lifchitz and Renaud Lifchitz (Editors), Search for 2^n-5, PRP Top Records.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 20000],PrimeQ[2^# - 5] &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
-
PARI
is(n)=isprime(2^n-5) \\ Charles R Greathouse IV, Feb 17 2017
Extensions
a(32)-a(34) from Labos Elemer, Jul 09 2004
a(35)-a(40) from Max Alekseyev, a(41) from Paul Underwood, a(42)-a(46) from Henri Lifchitz, added by Max Alekseyev, Feb 09 2012
a(47)-a(48) from Jon Grantham, Jul 29 2023
Comments