A059618 Number of strongly unimodal partitions of n (strongly unimodal means strictly increasing then strictly decreasing).
1, 1, 1, 3, 4, 6, 10, 15, 21, 30, 43, 59, 82, 111, 148, 199, 263, 344, 451, 584, 751, 965, 1230, 1560, 1973, 2483, 3110, 3885, 4834, 5990, 7405, 9123, 11202, 13724, 16762, 20417, 24815, 30081, 36377, 43900, 52860, 63511, 76166, 91157, 108886, 129842
Offset: 0
Examples
a(6) = 10 since 6 can be written as 6, 5+1, 4+2, 3+2+1, 2+4, 2+3+1, 1+5, 1+4+1, 1+3+2 or 1+2+3 (but for example neither 2+2+1+1 nor 1+2+2+1 which are only weakly unimodal). From _Joerg Arndt_, Dec 09 2012: (Start) The a(7) = 15 strongly unimodal compositions of 7 are [ #] composition [ 1] [ 1 2 3 1 ] [ 2] [ 1 2 4 ] [ 3] [ 1 3 2 1 ] [ 4] [ 1 4 2 ] [ 5] [ 1 5 1 ] [ 6] [ 1 6 ] [ 7] [ 2 3 2 ] [ 8] [ 2 4 1 ] [ 9] [ 2 5 ] [10] [ 3 4 ] [11] [ 4 2 1 ] [12] [ 4 3 ] [13] [ 5 2 ] [14] [ 6 1 ] [15] [ 7 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- R. C. Rhoades, Strongly Unimodal Sequences and Mixed Mock Modular Forms
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0, `if`(n=0, 1, add(b(n-j, j, 0), j=1..min(n, i-1))+ `if`(t=1, add(b(n-j, j, 1), j=i+1..n), 0))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..60); # Alois P. Heinz, Mar 21 2014
-
Mathematica
s[n_?Positive, k_] := s[n, k] = Sum[s[n - k, j], {j, 0, k - 1}]; s[0, 0] = 1; s[0, ] = 0; s[?Negative, ] = 0; t[n, k_] := t[n, k] = s[n, k] + Sum[t[n - k, j], {j, k + 1, n}]; a[n_] := t[n, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Dec 06 2012, after Vladeta Jovovic *)
-
PARI
N=66; x='x+O('x^N); Vec(sum(n=0,N,x^(n) * prod(k=1,n-1,1+x^k)^2)) \\ Joerg Arndt, Mar 26 2014
Formula
G.f.: sum(k>=0, x^k * prod(i=1..k-1, 1 + x^i)^2 ). - Vladeta Jovovic, Dec 05 2003