cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059618 Number of strongly unimodal partitions of n (strongly unimodal means strictly increasing then strictly decreasing).

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 10, 15, 21, 30, 43, 59, 82, 111, 148, 199, 263, 344, 451, 584, 751, 965, 1230, 1560, 1973, 2483, 3110, 3885, 4834, 5990, 7405, 9123, 11202, 13724, 16762, 20417, 24815, 30081, 36377, 43900, 52860, 63511, 76166, 91157, 108886, 129842
Offset: 0

Views

Author

Henry Bottomley, Jan 31 2001

Keywords

Examples

			a(6) = 10 since 6 can be written as 6, 5+1, 4+2, 3+2+1, 2+4, 2+3+1, 1+5, 1+4+1, 1+3+2 or 1+2+3 (but for example neither 2+2+1+1 nor 1+2+2+1 which are only weakly unimodal).
From _Joerg Arndt_, Dec 09 2012: (Start)
The a(7) = 15 strongly unimodal compositions of 7 are
[ #]   composition
[ 1]   [ 1 2 3 1 ]
[ 2]   [ 1 2 4 ]
[ 3]   [ 1 3 2 1 ]
[ 4]   [ 1 4 2 ]
[ 5]   [ 1 5 1 ]
[ 6]   [ 1 6 ]
[ 7]   [ 2 3 2 ]
[ 8]   [ 2 4 1 ]
[ 9]   [ 2 5 ]
[10]   [ 3 4 ]
[11]   [ 4 2 1 ]
[12]   [ 4 3 ]
[13]   [ 5 2 ]
[14]   [ 6 1 ]
[15]   [ 7 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
          `if`(n=0, 1, add(b(n-j, j, 0), j=1..min(n, i-1))+
          `if`(t=1, add(b(n-j, j, 1), j=i+1..n), 0)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 21 2014
  • Mathematica
    s[n_?Positive, k_] := s[n, k] = Sum[s[n - k, j], {j, 0, k - 1}]; s[0, 0] = 1; s[0, ] = 0; s[?Negative, ] = 0; t[n, k_] := t[n, k] = s[n, k] + Sum[t[n - k, j], {j, k + 1, n}]; a[n_] := t[n, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Dec 06 2012, after Vladeta Jovovic *)
  • PARI
    N=66; x='x+O('x^N); Vec(sum(n=0,N,x^(n) * prod(k=1,n-1,1+x^k)^2)) \\ Joerg Arndt, Mar 26 2014

Formula

a(n) = A059619(n,0) = Sum_k A059619(n,k) for k>0 when n>0.
G.f.: sum(k>=0, x^k * prod(i=1..k-1, 1 + x^i)^2 ). - Vladeta Jovovic, Dec 05 2003