cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059647 Primes p such that x^63 = 2 has no solution mod p.

Original entry on oeis.org

7, 13, 19, 29, 37, 43, 61, 67, 71, 73, 79, 97, 103, 109, 113, 127, 139, 151, 163, 181, 193, 197, 199, 211, 239, 241, 271, 281, 307, 313, 331, 337, 349, 367, 373, 379, 409, 421, 433, 449, 463, 487, 491, 523, 541, 547, 571, 577, 607, 613, 617, 619, 631, 659
Offset: 1

Views

Author

Klaus Brockhaus, Feb 02 2001

Keywords

Comments

Complement of A049595 relative to A000040.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(700) | not exists{ x : x in ResidueClassRing(p) | x^63 eq 2}]; // Vincenzo Librandi, Sep 21 2012
    
  • Mathematica
    ok[p_] := Reduce[Mod[x^63 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2150]], ok] (* Vincenzo Librandi, Sep 21 2012 *)
  • PARI
    N=10^4;  default(primelimit,N);
    ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
    forprime(p=2,N, if (! ok(p,2,63),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */