A059647 Primes p such that x^63 = 2 has no solution mod p.
7, 13, 19, 29, 37, 43, 61, 67, 71, 73, 79, 97, 103, 109, 113, 127, 139, 151, 163, 181, 193, 197, 199, 211, 239, 241, 271, 281, 307, 313, 331, 337, 349, 367, 373, 379, 409, 421, 433, 449, 463, 487, 491, 523, 541, 547, 571, 577, 607, 613, 617, 619, 631, 659
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(700) | not exists{ x : x in ResidueClassRing(p) | x^63 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
Mathematica
ok[p_] := Reduce[Mod[x^63 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2150]], ok] (* Vincenzo Librandi, Sep 21 2012 *)
-
PARI
N=10^4; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (! ok(p,2,63),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments