cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059661 Like A059459, but each term must be greater than the previous ones.

Original entry on oeis.org

2, 3, 7, 23, 31, 4127, 4159, 20543, 134238271, 134238527, 167792959, 1241534783, 3389018431, 72108495167, 72108503359, 72108765503, 2722258935367507707706996859526254457151, 2722258935367507707708149781030861304127, 13611294676837538538536137218847444070719
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2001

Keywords

Crossrefs

Programs

  • Maple
    flip_primes_asc_search := proc(a,upto_bit,upto_length) local i,n,t; if(nops(a) >= upto_length) then RETURN(a); fi; t := a[nops(a)]; for i from 0 to upto_bit do n := XORnos(t,(2^i)); if(isprime(n) and (n > t)) then print([op(a), n]); RETURN(flip_primes_asc_search([op(a), n],upto_bit,upto_length)); fi; od; RETURN([op(a),`and no more`]); end;
    flip_primes_asc_search([2],512,21);
  • Mathematica
    uptobit = 512; uptolength = 17; Clear[f]; f[a_] := f[a] = Module[{n, i, t}, If[Length[a] >= uptolength, Return[a]]; t = a[[-1]]; For[i = 0, i <= uptobit, i++, n = BitXor[t, 2^i]; If[PrimeQ[n] && n > t, Return[f[Append[ a, n]]]]]]; A059661 = f[{2}] (* Jean-François Alcover, Mar 07 2016, adapted from Maple *)
  • Python
    from sympy import isprime
    from itertools import islice
    def agen():
        an, bit = 2, 1
        while True:
            yield an
            while an&bit or not isprime(an+bit): bit <<= 1
            an += bit; bit = 1
    print(list(islice(agen(), 17))) # Michael S. Branicky, Oct 01 2022

Formula

a(n) = 2 + Sum_{k=1..n-1} 2^A059662(k). - Pontus von Brömssen, Jan 07 2023