A059668 Primes p such that x^36 = 2 has no solution mod p, but x^12 = 2 has a solution mod p.
919, 1423, 1999, 2143, 2287, 2791, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 11863, 12241, 12583, 12799, 13591, 16111, 17551, 18127, 20359, 20719, 21529, 21727, 21799, 22807, 23041, 23473, 23743, 23833, 23887, 23977
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..357
Programs
-
Magma
[p: p in PrimesUpTo(24000) | not exists{x: x in ResidueClassRing(p) | x^36 eq 2} and exists{x: x in ResidueClassRing(p) | x^12 eq 2}]; // Vincenzo Librandi, Sep 21 2012
-
Mathematica
Select[Prime[Range[PrimePi[30000]]], ! MemberQ[PowerMod[Range[#], 36, #], Mod[2, #]]&& MemberQ[PowerMod[Range[#], 12, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 22 2013 *)