A059690 Number of distinct Cunningham chains of first kind whose initial prime (cf. A059453) <= 2^n.
1, 2, 2, 2, 3, 5, 7, 13, 20, 31, 52, 83, 142, 242, 412, 742, 1308, 2294, 4040, 7327, 13253, 24255, 44306, 81700, 150401, 277335, 513705, 954847, 1780466, 3325109, 6224282, 11676337, 21947583, 41327438
Offset: 1
Examples
a(11)-a(10) = 21 means that between 1024 and 2048 exactly 21 primes introduce Cunningham chains: {1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003}. Their lengths are 2, 3 or 4. Thus the complete chains spread over more than one binary size-zone: {1409, 2819, 5639, 11279}. The primes 1439 and 2879 also form a chain but 1439 is not at the beginning of that chain, 89 is.
Links
- C. K. Caldwell, Cunningham Chains
- W. Roonguthai, Yves Gallot's Proth.exe and Cunningham Chains
Crossrefs
Programs
-
Mathematica
c = 0; k = 1; Do[ While[k <= 2^n, If[ PrimeQ[k] && !PrimeQ[(k - 1)/2] && PrimeQ[2k + 1], c++ ]; k++ ]; Print[c], {n, 1, 29}]
-
Python
from itertools import count, islice from sympy import isprime, primerange def c(p): return not isprime((p-1)//2) and isprime(2*p+1) def agen(): s = 1 for n in count(2): yield s; s += sum(1 for p in primerange(2**(n-1)+1, 2**n) if c(p)) print(list(islice(agen(), 20))) # Michael S. Branicky, Oct 09 2022
Extensions
Edited and extended by Robert G. Wilson v, Nov 23 2002
Title and a(30)-a(31) corrected, and a(32) from Sean A. Irvine, Oct 02 2022
a(33)-a(34) from Michael S. Branicky, Oct 09 2022