cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059777 Number of self-conjugate three-quadrant Ferrers graphs that partition n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 16, 19, 24, 31, 39, 47, 58, 72, 89, 107, 129, 158, 192, 228, 273, 329, 393, 465, 551, 655, 776, 911, 1070, 1261, 1480, 1726, 2014, 2354, 2742, 3180, 3688, 4279, 4954, 5716, 6590, 7603, 8754, 10049, 11532
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.

Crossrefs

Programs

  • Maple
    mul((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..101); # g.f.
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2016 *)

Formula

G.f.: 1/((1+x)*Sum_{k>=0} (-x)^(k*(k+1)/2)). [Corrected by N. J. A. Sloane, Jul 10 2022 at the suggestion of Eduardo Brietzke.] a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*(A002129(k)-1)*a(n-k). A006950(n) = a(n-1) + a(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: 1/((1+x)*G(0)), where G(k)= 1 - x^(2*k+1)/(1 - x^(2*k+2)/(x^(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: conjecture: 1/(Q(0) - 1), where Q(k) = 1 + (-x)^k - (-x)^(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2013
a(n) ~ exp(sqrt(n/2)*Pi)/(8*sqrt(2)*n). - Vaclav Kotesovec, Sep 26 2016
G.f.: Sum_{k>=0} x^(2*k) * Product_{j=1..k} (1+x^(2*j-1))/(1-x^(2*j)). - Seiichi Manyama, Jul 11 2018