A059782 Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 0, 0, 1, 1
Offset: 0
Examples
0; 0,0,0; 0,0,1,0,0; 0,1,1,0,1,1,0; ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 118.
Programs
-
Maple
with(numtheory): T := proc(i,j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1,j-2)+T(i-1,j-1)+T(i-1,j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i,j) mod 3 <> 0 then printf(`%d,`,0) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 0 then printf(`%d,`, ifactors(T(i,j))[2,2,2] ) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 1 then printf(`%d,`, ifactors(T(i,j))[2,1,2] ) fi: #printf(`%d,`,T(i,j)) od:od: # James Sellers, Feb 22 2001
Extensions
More terms from James Sellers, Feb 22 2001