cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059838 Number of permutations in the symmetric group S_n that have even order.

Original entry on oeis.org

0, 0, 1, 3, 15, 75, 495, 3465, 29295, 263655, 2735775, 30093525, 370945575, 4822292475, 68916822975, 1033752344625, 16813959537375, 285837312135375, 5214921734397375, 99083512953550125, 2004231846526284375, 42088868777051971875, 934957186489800849375
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Feb 25 2001

Keywords

Comments

From Bob Beals: Let P[n] = probability that a random permutation in S_n has odd order. Then P[n] = sum_k P[random perm in S_n has odd order | n is in a cycle of length k] * P[n is in a cycle of length k]. Now P[n is in a cycle of length k] = 1/n; P[random perm in S_n has odd order | k is even] = 0; P[random perm in S_n has odd order | k is odd] = P[ random perm in S_{n-k} has odd order]. So P[n] = (1/n) * sum_{k odd} P[n-k] = (1/n) P[n-1] + (1/n) sum_{k odd and >=3} P[n-k] = (1/n)*P[n-1] + ((n-2)/n)*P[n-2] and P[1] = 1, P[2] = 1/2. The solution is: P[n] = (1 - 1/2) (1 - 1/4) ... (1-1/(2*[n/2])).

Examples

			A permutation in S_4 has even order iff it is a transposition, a product of two disjoint transpositions or a 4 cycle so a(4) = C(4,2)+ C(4,2)/2 + 3! = 15.
		

Crossrefs

Programs

  • GAP
    List([1..9],n->Length(Filtered(SymmetricGroup(n),x->(Order(x) mod 2)=0)));
  • Maple
    s := series((1-sqrt(1-x^2))/(1-x), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
  • Mathematica
    a[n_] := a[n] = n! - ((n-1)! - a[n-1]) * (n+Mod[n, 2]-1); a[0] = 0; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011, after Pari *)
    With[{nn=20},CoefficientList[Series[(1-Sqrt[1-x^2])/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2015 *)
  • PARI
    a(n)=if(n<1,0,n!-((n-1)!-a(n-1))*(n+n%2-1))
    

Formula

E.g.f.: (1-sqrt(1-x^2))/(1-x).
a(2n) = (2n-1)! + (2n-1)a(2n-1), a(2n+1) = (2n+1)a(2n).
a(n) = n! - A000246(n). - Victor S. Miller

Extensions

Additional comments and more terms from Victor S. Miller, Feb 25 2001
Further terms and e.g.f. from Vladeta Jovovic, Feb 28 2001