A059843 a(n) is the smallest prime p such that p-n is a nonzero square.
2, 3, 7, 5, 41, 7, 11, 17, 13, 11, 47, 13, 17, 23, 19, 17, 53, 19, 23, 29, 37, 23, 59, 73, 29, 107, 31, 29, 173, 31, 47, 41, 37, 43, 71, 37, 41, 47, 43, 41, 617, 43, 47, 53, 61, 47, 83, 73, 53, 59, 67, 53, 89, 79, 59, 137, 61, 59, 383, 61, 97, 71, 67, 73, 101, 67, 71, 149, 73
Offset: 1
Keywords
Examples
For n = 17, let P = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,...} be the set of primes, then P - 17 = {-15,...,-4,0,2,6,12,14,20,24,26,30,36,...}. The first positive square in P - 17 is 36 with p = 53, so a(17) = 53. The square arising here is usually 1.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
SearchLimit := 100; for n from 1 to 400 do k := 0: c := true: while(c and k < SearchLimit) do k := k + 1: c := not isprime(k^2+n): end do: if k = SearchLimit then error("Search limit reached!") fi; a[n] := k^2 + n end do: seq(a[j], j=1..400); # Edited and SearchLimit introduced by Peter Luschny, Feb 05 2019
-
Mathematica
spsq[n_]:=Module[{p=NextPrime[n]},While[!IntegerQ[Sqrt[p-n]],p= NextPrime[ p]];p]; Array[spsq,70] (* Harvey P. Dale, Nov 10 2017 *)
-
PARI
for(n=1, 100, for(k=1, 100, if(isprime(k^2+n), print1(k^2+n, ", "); break()))) \\ Jianing Song, Feb 04 2019
-
PARI
a(n) = forprime(p=n,, if ((p-n) && issquare(p-n), return (p))); \\ Michel Marcus, Feb 05 2019
Formula
a(n) = min{p : p - n = x^2 for some x > 0, p is prime}.
Does a(n) exist for all n? - Jianing Song, Feb 04 2019