cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059873 The lexicographically earliest sequence of binary encodings of solutions satisfying the equation given in A059871.

Original entry on oeis.org

1, 3, 5, 13, 21, 46, 78, 175, 303, 639, 1143, 2539, 4542, 9214, 17406, 36735, 69374, 139254, 270327, 556031, 1079294, 2162678, 4259819, 8642558, 17022974, 34078590, 67632893, 136249338, 270401534, 541064701, 1077935867, 2162163707
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2001

Keywords

Comments

The encoding is explained in A059872. Apply bin_prime_sum (see A059876) to this sequence and you get A000040, the prime numbers.

Crossrefs

Programs

  • Maple
    primesums_primes_search(16); primesums_primes_search := (upto_n) -> primesums_primes_search_aux([],1,upto_n); primesums_primes_search_aux := proc(a,n,upto_n) local i,p,t; if(n > upto_n) then RETURN(a); fi; p := ithprime(n); for i from (2^(n-1)) to ((2^n)-1) do t := bin_prime_sum(i); if(t = p) then print([op(a),i]); RETURN(primesums_primes_search_aux([op(a),i],n+1,upto_n)); fi; od; RETURN([op(a),`and no more found`]); end;

Extensions

More terms from Naohiro Nomoto, Sep 12 2001
More terms from Larry Reeves (larryr(AT)acm.org), Nov 20 2003