A059896 The set of Fermi-Dirac factors of A(n,k) is the union of the Fermi-Dirac factors of n and k. Symmetric square array read by antidiagonals.
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 8, 3, 8, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 24, 5, 24, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 27, 8, 35, 6, 35, 8, 27, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24
Offset: 1
Examples
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 OR 3) * 3^(3 OR 5) = 2^7*3^7 = 279936. The top left 12 X 12 corner of the array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 2, 2, 6, 8, 10, 6, 14, 8, 18, 10, 22, 24 3, 6, 3, 12, 15, 6, 21, 24, 27, 30, 33, 12 4, 8, 12, 4, 20, 24, 28, 8, 36, 40, 44, 12 5, 10, 15, 20, 5, 30, 35, 40, 45, 10, 55, 60 6, 6, 6, 24, 30, 6, 42, 24, 54, 30, 66, 24 7, 14, 21, 28, 35, 42, 7, 56, 63, 70, 77, 84 8, 8, 24, 8, 40, 24, 56, 8, 72, 40, 88, 24 9, 18, 27, 36, 45, 54, 63, 72, 9, 90, 99, 108 10, 10, 30, 40, 10, 30, 70, 40, 90, 10, 110, 120 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 11, 132 12, 24, 12, 12, 60, 24, 84, 24, 108, 120, 132, 12
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of the array
- Eric Weisstein's World of Mathematics, Square Part.
- Eric Weisstein's World of Mathematics, Squarefree Part.
Crossrefs
Programs
-
Mathematica
a[i_, i_] := i; a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, e1[] = 0; Scan[(e1[#[[1]]] = #[[2]])&, f1]; e2[] = 0; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitOr[e1[#], e2[#]]& /@ Union[f1[[All, 1]], f2[[All, 1]]])]; Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
-
PARI
A059896(n,k) = if(n==k, n, lcm(core(n),core(k)) * A059896(core(n,1)[2],core(k,1)[2])^2) \\ Peter Munn, Mar 07 2022
-
Scheme
(define (A059896 n) (A059896bi (A002260 n) (A004736 n))) (define (A059896bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) (* m b)) ((= 1 b) (* m a)) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A003986bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (/ a (A028233 a)) b (* m (A028233 a)))) (else (loop a (/ b (A028233 b)) (* m (A028233 b))))))) ;; Antti Karttunen, Apr 11 2017
Formula
From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) * A059895(x,y) = x*y.
(End).
From Peter Munn, Mar 02 2022: (Start)
OR denotes the bitwise operation (A003986).
Limited multiplicative property: if gcd(n_1*k_1, n_2*k_2) = 1 then A(n_1*n_2, k_1*k_2) = A(n_1, k_1) * A(n_2, k_2).
For prime p, A(p^e_1, p^e_2) = p^(e_1 OR e_2).
A(n, A(m, k)) = A(A(n, m), k).
A(n, k) = A(k, n).
A(n, 1) = A(n, n) = n.
A(n^2, k^2) = A(n, k)^2.
A(n, k) = A(A007913(n), A007913(k)) * A(A008833(n), A008833(k)) = lcm(A007913(n), A007913(k)) * A(A000188(n), A000188(k))^2.
(End)
Extensions
New name from Peter Munn, Mar 02 2022
Comments