cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A284576 a(n) = A059896(A260443(n), A260443(1+n)).

Original entry on oeis.org

2, 6, 6, 30, 90, 270, 30, 210, 630, 6750, 6750, 1890, 15750, 47250, 210, 2310, 6930, 47250, 47250, 330750, 992250, 425250, 47250, 103950, 173250, 2315250, 2315250, 519750, 8489250, 25467750, 2310, 30030, 90090, 519750, 25467750, 3638250, 1910081250, 13023281250, 1447031250, 1400726250, 4202178750, 104186250, 2604656250
Offset: 0

Views

Author

Antti Karttunen, Apr 11 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A059896(A260443(n), A260443(1+n)).
a(n) = A284577(n) * A284578(n).
a(n) = A277324(n) / A284578(n).

A007947 Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

R. Muller, Mar 15 1996

Keywords

Comments

Multiplicative with a(p^e) = p.
Product of the distinct prime factors of n.
a(k)=k for k=squarefree numbers A005117. - Lekraj Beedassy, Sep 05 2006
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), b*c = A019554(n) = "outer square root" of n, and a(n) = lcm(a(b),c). Unless n is biquadrateful (A046101), a(n) = lcm(b,c). [Edited by Jeppe Stig Nielsen, Oct 10 2021, and Andrey Zabolotskiy, Feb 12 2025]
a(n) = A128651(A129132(n-1) + 2) for n > 1. - Reinhard Zumkeller, Mar 30 2007
Also the least common multiple of the prime factors of n. - Peter Luschny, Mar 22 2011
The Mobius transform of the sequence generates the sequence of absolute values of A097945. - R. J. Mathar, Apr 04 2011
Appears to be the period length of k^n mod n. For example, n^12 mod 12 has period 6, repeating 1,4,9,4,1,0, so a(12)= 6. - Gary Detlefs, Apr 14 2013
a(n) differs from A014963(n) when n is a term of A024619. - Eric Desbiaux, Mar 24 2014
a(n) is also the smallest base (also termed radix) for which the representation of 1/n is of finite length. For example a(12) = 6 and 1/12 in base 6 is 0.03, which is of finite length. - Lee A. Newberg, Jul 27 2016
a(n) is also the divisor k of n such that d(k) = 2^omega(n). a(n) is also the smallest divisor u of n such that n divides u^n. - Juri-Stepan Gerasimov, Apr 06 2017

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 2*x^8 + 3*x^9 + ... - _Michael Somos_, Jul 15 2018
		

Crossrefs

See A007913, A062953, A000188, A019554, A003557, A066503, A087207 for other properties related to square and squarefree divisors of n.
More general factorization-related properties, specific to n: A020639, A028234, A020500, A010051, A284318, A000005, A001221, A005361, A034444, A014963, A128651, A267116.
Range of values is A005117.
Bisections: A099984, A099985.
Sequences about numbers that have the same squarefree kernel: A065642, array A284311 (A284457).
A003961, A059896 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a007947 = product . a027748_row  -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [ &*PrimeDivisors(n): n in [1..100] ]; // Klaus Brockhaus, Dec 04 2008
    
  • Maple
    with(numtheory); A007947 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end;
    A007947 := n -> ilcm(op(numtheory[factorset](n))):
    seq(A007947(i),i=1..69); # Peter Luschny, Mar 22 2011
    A:= n -> convert(numtheory:-factorset(n),`*`):
    seq(A(n),n=1..100); # Robert Israel, Aug 10 2014
    seq(NumberTheory:-Radical(n), n = 1..78); # Peter Luschny, Jul 20 2021
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 78] (* Robert G. Wilson v, Aug 29 2012 *)
    Table[Last[Select[Divisors[n],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Jul 14 2014 *)
    a[ n_] := If[ n < 1, 0, Sum[ EulerPhi[d] Abs @ MoebiusMu[d], {d, Divisors[ n]}]]; (* Michael Somos, Jul 15 2018 *)
    Table[Product[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 20 2020 *)
  • PARI
    a(n) = factorback(factorint(n)[,1]); \\ Andrew Lelechenko, May 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
    
  • Python
    from sympy import primefactors, prod
    def a(n): return 1 if n < 2 else prod(primefactors(n))
    [a(n) for n in range(1, 51)]  # Indranil Ghosh, Apr 16 2017
    
  • Sage
    def A007947(n): return mul(p for p in prime_divisors(n))
    [A007947(n) for n in (1..60)] # Peter Luschny, Mar 07 2017
    
  • Scheme
    (define (A007947 n) (if (= 1 n) n (* (A020639 n) (A007947 (A028234 n))))) ;; ;; Needs also code from A020639 and A028234. - Antti Karttunen, Jun 18 2017

Formula

If n = Product_j (p_j^k_j) where p_j are distinct primes, then a(n) = Product_j (p_j).
a(n) = Product_{k=1..A001221(n)} A027748(n,k). - Reinhard Zumkeller, Aug 27 2011
Dirichlet g.f.: zeta(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jan 21 2012
a(n) = Sum_{d|n} phi(d) * mu(d)^2 = Sum_{d|n} |A097945(d)|. - Enrique Pérez Herrero, Apr 23 2012
a(n) = Product_{d|n} d^moebius(n/d) (see Billal link). - Michel Marcus, Jan 06 2015
a(n) = n/( Sum_{k=1..n} (floor(k^n/n)-floor((k^n - 1)/n)) ) = e^(Sum_{k=2..n} (floor(n/k) - floor((n-1)/k))*A010051(k)*M(k)) where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016
a(n) = n/A003557(n). - Juri-Stepan Gerasimov, Apr 07 2017
G.f.: Sum_{k>=1} phi(k)*mu(k)^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
From Antti Karttunen, Jun 18 2017: (Start)
a(1) = 1; for n > 1, a(n) = A020639(n) * a(A028234(n)).
a(n) = A019565(A087207(n)). (End)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)). - Vaclav Kotesovec, Dec 18 2019
From Peter Munn, Jan 01 2020: (Start)
a(A059896(n,k)) = A059896(a(n), a(k)).
a(A003961(n)) = A003961(a(n)).
a(n^2) = a(n).
a(A225546(n)) = A019565(A267116(n)). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463/2. - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)).
For n>1, Sum_{k=1..n} a(gcd(n,k))*mu(a(gcd(n,k)))*phi(gcd(n,k))/gcd(n,k) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*mu(a(n/gcd(n,k)))*phi(gcd(n,k))*gcd(n,k) = 0. (End)
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*psi(d), where omega = A001221 and psi = A001615. - Ridouane Oudra, Aug 01 2025

Extensions

More terms from several people including David W. Wilson
Definition expanded by Jonathan Sondow, Apr 26 2013

A003991 Multiplication table read by antidiagonals: T(i,j) = i*j, i>=1, j>=1.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 4, 5, 8, 9, 8, 5, 6, 10, 12, 12, 10, 6, 7, 12, 15, 16, 15, 12, 7, 8, 14, 18, 20, 20, 18, 14, 8, 9, 16, 21, 24, 25, 24, 21, 16, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12
Offset: 1

Views

Author

Keywords

Comments

Or, triangle X(n,m) = T(n-m+1,m) read by rows, in which row n gives the numbers n*1, (n-1)*2, (n-2)*3, ..., 2*(n-1), 1*n.
Radius of incircle of Pythagorean triangle with sides a=(n+1)^2-m^2, b=2*(n+1)*m and c=(n+1)^2+m^2. - Floor van Lamoen, Aug 16 2001
A permutation of A061017. - Matthew Vandermast, Feb 28 2003
In the proof of countability of rational numbers they are arranged in a square array. a(n) = p*q where p/q is the corresponding rational number as read from the array. - Amarnath Murthy, May 29 2003
Permanent of upper right n X n corner is A000442. - Marc LeBrun, Dec 11 2003
Row 12 gives total number of partridges, turtle doves, ... and drummers drumming that you have received at the end of the Twelve Days of Christmas song. - Alonso del Arte, Jun 17 2005
Consider a particle with spin S (a half-integer) and 2S+1 quantum states |m>, m = -S,-S+1,...,S-1,S. Then the matrix element = sqrt((S+m+1)(S-m)) of the spin-raising operator is the square-root of the triangular (tabl) element T(r,o) of this sequence in row r = 2S, and at offset o=2(S+m). T(r,o) is also the intensity || of the transition between the states |m> and |m+1>. For example, the five transitions between the 6 states of a spin S=5/2 particle have relative intensities 5,8,9,8,5. The total intensity of all spin 5/2 transitions (relative to spin 1/2) is 35, which is the tetrahedral number A000292(5). - Stanislav Sykora, May 26 2012
Sum_{k=0..2n-2} (-1)^k*a(A000124(2n-2)+k) = n. See A098359. - Charlie Marion, Apr 22 2013
T(n, k) is also the (k-1)-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n. - Stefano Spezia, Jul 12 2019
From Eric Lengyel, Jun 28 2023: (Start)
X(n, m+1) is the number of degrees of freedom that an m-dimensional flat geometry (point, line, plane, etc.) has when embedded in an n-dimensional Euclidean space.
X(n+1, m+1) is the number of degrees of freedom that an m-ball has when embedded in an n-dimensional Euclidean space. (End)
T(n, k) is also the average number of steps it takes a person to fall off a board of length n+k, if the person starts a random walk at k. - Ruediger Jehn, May 12 2025

Examples

			The array T starts in row n=1 with columns m>=1 as:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
   2   4   6   8  10  12  14  16  18  20  22  24  26  28  30
   3   6   9  12  15  18  21  24  27  30  33  36  39  42  45
   4   8  12  16  20  24  28  32  36  40  44  48  52  56  60
   5  10  15  20  25  30  35  40  45  50  55  60  65  70  75
   6  12  18  24  30  36  42  48  54  60  66  72  78  84  90
   7  14  21  28  35  42  49  56  63  70  77  84  91  98 105
   8  16  24  32  40  48  56  64  72  80  88  96 104 112 120
   9  18  27  36  45  54  63  72  81  90  99 108 117 126 135
  10  20  30  40  50  60  70  80  90 100 110 120 130 140 150
The triangle X(n, m) begins
   n\m  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
   1:   1
   2:   2  2
   3:   3  4  3
   4:   4  6  6  4
   5:   5  8  9  8  5
   6:   6 10 12 12 10  6
   7:   7 12 15 16 15 12  7
   8:   8 14 18 20 20 18 14  8
   9:   9 16 21 24 25 24 21 16  9
  10:  10 18 24 28 30 30 28 24 18 10
  11:  11 20 27 32 35 36 35 32 27 20 11
  12:  12 22 30 36 40 42 42 40 36 30 22 12
  13:  13 24 33 40 45 48 49 48 45 40 33 24 13
  14:  14 26 36 44 50 54 56 56 54 50 44 36 26 14
  15:  15 28 39 48 55 60 63 64 63 60 55 48 39 28 15
  ... Formatted by _Wolfdieter Lang_, Dec 02 2014
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 46.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 5-6.

Crossrefs

Main diagonal gives squares A000290. Antidiagonal sums are tetrahedral numbers A000292. See A004247 for another version.

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1): k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jul 12 2019
  • Maple
    seq(seq(i*(n-i),i=1..n-1),n=2..10); # Robert Israel, Dec 14 2015
  • Mathematica
    Table[(x + 1 - y) y, {x, 13}, {y, x}] // Flatten (* Robert G. Wilson v, Oct 06 2007 *)
    f[n_] := Table[SeriesCoefficient[E^(x + y) (1+ x - y +x*y-y^2), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11,0]] (* Stefano Spezia, Jul 12 2019 *)
  • PARI
    A003991(n,k) = if(k<1 || n<1,0,k*n)
    

Formula

Rectangular array: T(n, m) = n*m, n>=1, m>= 1.
Triangle X(n, m) = T(n-m+1, m) = (n-m+1)*m.
Sum_{i=1..n} Sum_{j=1..n} a(n) = A000537(n) [Sum of first n cubes; or n-th triangular number squared.] Determinant of all n X n contiguous subarrays of A003991 is 0. - Gerald McGarvey, Sep 26 2004
G.f. as rectangular array: x*y/((1 - x)^2*(1 - y)^2).
a(n) = i*j, where i=floor((1+sqrt(8n-7))/2), j=n-i*(i-1)/2. - Hieronymus Fischer, Aug 08 2007
As an infinite lower triangular matrix equals A000012 * A002260; where A000012 = (1; 1,1; 1,1,1; ...) and A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Oct 23 2007
As a linear array, the sequence is a(n) = A002260(n)*A004736(n) or a(n) = ((t*t+3*t+4)/2-n)*(n-(t*(t+1)/2)), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012
G.f. as linear array: (x - 3*x^2 + Sum_{k >= 0} ((k+2-x-(k+1)*x^2)*x^((k^2+3*k+4)/2)))/(1-x)^3. - Robert Israel, Dec 14 2015
E.g.f. as triangle: exp(x+y)*(1 + x - y + x*y - y^2). - Stefano Spezia, Jul 12 2019
a(n) = (1/2)*t + (n - 1/4)*t^2 - (1/4)*t^4 - n^2 + n, where t = floor(sqrt(2*n) + 1/2). - Ridouane Oudra, Nov 21 2020
a(n) = A003989(n) * A003990(n) = A059895(n) * A059896(n) = A059895(n)^2 * A059897(n). - Antti Karttunen, Dec 13 2021
T(n,k) = A002620(n+k) - A002620(n-k). - Michel Marcus, Jan 06 2023
T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < y < z. - Clark Kimberling, Jan 22 2024
E.g.f. as rectangular array: x*y*exp(x+y). - Stefano Spezia, Jun 27 2025

Extensions

More terms from Michael Somos

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A064547 Sum of binary digits (or count of 1-bits) in the exponents of the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Wouter Meeussen, Oct 09 2001

Keywords

Comments

This sequence is different from A058061 for n containing 6th, 8th, ..., k-th powers in its prime decomposition, where k runs through the integers missing from A064548.
For n > 1, n is a product of a(n) distinct members of A050376. - Matthew Vandermast, Jul 13 2004
For n > 1: a(n) = length of n-th row in A213925. - Reinhard Zumkeller, Mar 20 2013
Number of Fermi-Dirac factors of n. - Peter Munn, Dec 27 2019

Examples

			For n = 54, n = 2^1 * 3^3 with exponents (1) and (11) in binary, so a(54) = A000120(1) + A000120(3) = 1 + 2 = 3.
		

Crossrefs

Cf. A000028 (positions of odd terms), A000379 (of even terms).
Cf. A050376 (positions of ones), A268388 (terms larger than ones).
Row lengths of A213925.
A000120, A007814, A028234, A037445, A052331, A064989, A067029, A156552, A223491, A286574 are used in formulas defining this sequence.
Cf. A005117, A058061 (to which A064548 relates), A138302.
Cf. other sequences counting factors of n: A001221, A001222.
Cf. other sequences where a(n) depends only on the prime signature of n: A181819, A267116, A268387.
A003961, A007913, A008833, A059895, A059896, A059897, A225546 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a064547 1 = 0
    a064547 n = length $ a213925_row n  -- Reinhard Zumkeller, Mar 20 2013
    
  • Maple
    expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end;
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # N. J. A. Sloane, Dec 20 2007
    # alternative Maple program:
    A064547:= proc(n) local F;
    F:= ifactors(n)[2];
    add(convert(convert(f[2],base,2),`+`),f=F)
    end proc:
    map(A064547,[$1..100]); # Robert Israel, May 17 2016
  • Mathematica
    Table[Plus@@(DigitCount[Last/@FactorInteger[k], 2, 1]), {k, 105}]
  • PARI
    a(n) = {my(f = factor(n)[,2]); sum(k=1, #f, hammingweight(f[k]));} \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (cond ((= 1 n) 0) (else (+ (A000120 (A067029 n)) (A064547 (A028234 n))))))
    ;; Antti Karttunen, Feb 09 2016
    
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (if (= 1 n) 0 (+ (A000120 (A007814 n)) (A064547 (A064989 n)))))
    ;; Antti Karttunen, Feb 09 2016
    

Formula

a(m*n) <= a(m)*a(n). - Reinhard Zumkeller, Mar 20 2013
From Antti Karttunen, Feb 09 2016: (Start)
a(1) = 0, and for n > 1, a(n) = A000120(A067029(n)) + a(A028234(n)).
a(1) = 0, and for n > 1, a(n) = A000120(A007814(n)) + a(A064989(n)).
(End)
a(n) = log_2(A037445(n)). - Vladimir Shevelev, May 13 2016
a(n) = A286574(A156552(n)). - Antti Karttunen, May 28 2017
Additive with a(p^e) = A000120(e). - Jianing Song, Jul 28 2018
a(n) = A000120(A052331(n)). - Peter Munn, Aug 26 2019
From Peter Munn, Dec 18 2019: (Start)
a(A000379(n)) mod 2 = 0.
a(A000028(n)) mod 2 = 1.
A001221(n) <= a(n) <= A001222(n).
A001221(n) < a(n) => a(n) < A001222(n).
a(n) = A001222(n) if and only if n is in A005117.
a(n) = A001221(n) if and only if n is in A138302.
a(n^2) = a(n).
a(A003961(n)) = a(n).
a(A225546(n)) = a(n).
a(n) = a(A007913(n)) + a(A008833(n)).
a(A050376(n)) = 1.
a(A059897(n,k)) + 2 * a(A059895(n,k)) = a(n) + a(k).
a(A059896(n,k)) + a(A059895(n,k)) = a(n) + a(k).
Alternative definition: a(1) = 0; a(n * m) = a(n) + 1 for m = A050376(k) > A223491(n).
(End)
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.13605447049622836522... (A382294), where f(x) = -x + Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 28 2023
a(n) << log n/log log n. - Charles R Greathouse IV, Nov 29 2024

A059897 Symmetric square array read by antidiagonals: A(n,k) is the product of all factors that occur in one, but not both, of the Fermi-Dirac factorizations of n and k.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 6, 6, 4, 5, 8, 1, 8, 5, 6, 10, 12, 12, 10, 6, 7, 3, 15, 1, 15, 3, 7, 8, 14, 2, 20, 20, 2, 14, 8, 9, 4, 21, 24, 1, 24, 21, 4, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 5, 27, 2, 35, 1, 35, 2, 27, 5, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Old name: Square array read by antidiagonals: T(i,j) = product prime(k)^(Ei(k) XOR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; XOR is the bitwise operation on binary representation of the exponents.
Analogous to multiplication, with XOR replacing +.
From Peter Munn, Apr 01 2019: (Start)
(1) Defines an abelian group whose underlying set is the positive integers. (2) Every element is self-inverse. (3) For all n and k, A(n,k) is a divisor of n*k. (4) The terms of A050376, sometimes called Fermi-Dirac primes, form a minimal set of generators. In ordered form, it is the lexicographically earliest such set.
The unique factorization of positive integers into products of distinct terms of the group's lexicographically earliest minimal set of generators seems to follow from (1) (2) and (3).
From (1) and (2), every row and every column of the table is a self-inverse permutation of the positive integers. Rows/columns numbered by nonmembers of A050376 are compositions of earlier rows/columns.
It is a subgroup of the equivalent group over the nonzero integers, which has -1 as an additional generator.
As generated by A050376, the subgroup of even length words is A000379. The complementary set of odd length words is A000028.
The subgroup generated by A000040 (the primes) is A005117 (the squarefree numbers).
(End)
Considered as a binary operation, the result is (the squarefree part of the product of its operands) times the square of (the operation's result when applied to the square roots of the square parts of its operands). - Peter Munn, Mar 21 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 XOR 3) * 3^(3 XOR 5) = 2^6 * 3^6 = 46656.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  1,  6,  8, 10,  3, 14,  4,  18,   5,  22,  24
   3,  6,  1, 12, 15,  2, 21, 24,  27,  30,  33,   4
   4,  8, 12,  1, 20, 24, 28,  2,  36,  40,  44,   3
   5, 10, 15, 20,  1, 30, 35, 40,  45,   2,  55,  60
   6,  3,  2, 24, 30,  1, 42, 12,  54,  15,  66,   8
   7, 14, 21, 28, 35, 42,  1, 56,  63,  70,  77,  84
   8,  4, 24,  2, 40, 12, 56,  1,  72,  20,  88,   6
   9, 18, 27, 36, 45, 54, 63, 72,   1,  90,  99, 108
  10,  5, 30, 40,  2, 15, 70, 20,  90,   1, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,   1, 132
  12, 24,  4,  3, 60,  8, 84,  6, 108, 120, 132,   1
From _Peter Munn_, Apr 04 2019: (Start)
The subgroup generated by {6,8,10}, the first three integers > 1 not in A050376, has the following table:
    1     6     8    10    12    15    20   120
    6     1    12    15     8    10   120    20
    8    12     1    20     6   120    10    15
   10    15    20     1   120     6     8    12
   12     8     6   120     1    20    15    10
   15    10   120     6    20     1    12     8
   20   120    10     8    15    12     1     6
  120    20    15    12    10     8     6     1
(End)
		

Crossrefs

Cf. A284567 (A000142 or A003418-analog for this operation).
Rows/columns: A073675 (2), A120229 (3), A120230 (4), A307151 (5), A307150 (6), A307266 (8), A307267 (24).
Particularly significant subgroups or cosets: A000028, A000379, A003159, A005117, A030229, A252895. See also the lists in A329050, A352273.
Sequences that relate this sequence to multiplication: A000188, A007913, A059895.

Programs

  • Mathematica
    a[i_, i_] = 1;
    a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, e1[] = 0; Scan[(e1[#[[1]]] = #[[2]])&, f1]; e2[] = 0; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitXor[e1[#], e2[#]]& /@ Union[f1[[All, 1]], f2[[All, 1]]])];
    Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
  • PARI
    T(n,k) = {if (n==1, return (k)); if (k==1, return (n)); my(fn=factor(n), fk=factor(k)); vp = setunion(fn[,1]~, fk[,1]~); prod(i=1, #vp, vp[i]^(bitxor(valuation(n, vp[i]), valuation(k, vp[i]))));} \\ Michel Marcus, Apr 03 2019
    
  • PARI
    T(i, j) = {if(gcd(i, j) == 1, return(i * j)); if(i == j, return(1)); my(f = vecsort(concat(factor(i)~, factor(j)~)), t = 1, res = 1); while(t + 1 <= #f, if(f[1, t] == f[1, t+1], res *= f[1, t] ^ bitxor(f[2, t] , f[2, t+1]); t+=2; , res*= f[1, t]^f[2, t]; t++; ) ); if(t == #f, res *= f[1, #f] ^ f[2, #f]); res } \\ David A. Corneth, Apr 03 2019
    
  • PARI
    A059897(n,k) = if(n==k, 1, core(n*k) * A059897(core(n,1)[2],core(k,1)[2])^2) \\ Peter Munn, Mar 21 2022
  • Scheme
    (define (A059897 n) (A059897bi (A002260 n) (A004736 n)))
    (define (A059897bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) (* m b)) ((= 1 b) (* m a)) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A003987bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (/ a (A028233 a)) b (* m (A028233 a)))) (else (loop a (/ b (A028233 b)) (* m (A028233 b)))))))
    ;; Antti Karttunen, Apr 11 2017
    

Formula

For all x, y >= 1, A(x,y) * A059895(x,y)^2 = x*y. - Antti Karttunen, Apr 11 2017
From Peter Munn, Apr 01 2019: (Start)
A(n,1) = A(1,n) = n
A(n, A(m,k)) = A(A(n,m), k)
A(n,n) = 1
A(n,k) = A(k,n)
if i_1 <> i_2 then A(A050376(i_1), A050376(i_2)) = A050376(i_1) * A050376(i_2)
if A(n,k_1) = n * k_1 and A(n,k_2) = n * k_2 then A(n, A(k_1,k_2)) = n * A(k_1,k_2)
(End)
T(k, m) = k*m for coprime k and m. - David A. Corneth, Apr 03 2019
if A(n*m,m) = n, A(n*m,k) = A(n,k) * A(m,k) / k. - Peter Munn, Apr 04 2019
A(n,k) = A007913(n*k) * A(A000188(n), A000188(k))^2. - Peter Munn, Mar 21 2022

Extensions

New name from Peter Munn, Mar 21 2022

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A267116 Bitwise-OR of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2.
For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1.
For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7.
		

Crossrefs

Cf. A000290 (indices of even numbers).
Cf. A000037 (indices of odd numbers).
Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence.
Sequences with similar definitions: A260728, A267113, A267115 (bitwise-AND) and A268387 (bitwise-XOR of exponents).
Sequences with related analysis: A267114, A268374, A268375, A268376.
Sequences A088529, A136565 and A181591 coincide with a(n) for n: 2 <= n < 24.
A003961, A059896 are used to express relationship between terms of this sequence.
Related to A087207 via A225546.

Programs

  • Maple
    read("transforms"):
    A267116 := proc(n)
        local a,e ;
        a := 0 ;
        for e in ifactors(n)[2] do
            a := ORnos(a,op(2,e)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Feb 16 2021
  • Mathematica
    {0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* Michael De Vlieger, Feb 04 2016 *)
  • PARI
    a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k,2]);); b; \\ Michel Marcus, Feb 05 2016
    
  • PARI
    a(n)=if(n>1, fold(bitor, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
    
  • Python
    from functools import reduce
    from operator import or_
    from sympy import factorint
    def A267116(n): return reduce(or_,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022

Formula

a(1) = 0; for n > 1: a(n) = A067029(n) OR a(A028234(n)). [Here OR stands for bitwise-or, A003986.]
Other identities and observations. For all n >= 1:
a(n) = A007814(n) OR A260728(n) OR A267113(n).
a(n) = A001222(n) - A268374(n).
A268387(n) <= a(n) <= A001222(n).
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k).
a(A003961(n)) = a(n).
a(n^2) = 2*a(n).
a(n) = A087207(A225546(n)).
a(A225546(n)) = A087207(n).
(End)

A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Jan 10 2018

Keywords

Comments

For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8    9    10
  ---+------------------------------------------------
    1|  1   1   1    1    1    1    1     1    1     1  -> A000012
    2|  1   2   3    4    5    6    7     8    9    10  -> A000027
    3|  1   3   5    9    7   15   11    27   25    21  -> A003961
    4|  1   4   9   16   25   36   49    64   81   100  -> A000290
    5|  1   5   7   25   11   35   13   125   49    55  -> A357852
    6|  1   6  15   36   35   90   77   216  225   210  -> A191002
    7|  1   7  11   49   13   77   17   343  121    91
    8|  1   8  27   64  125  216  343   512  729  1000  -> A000578
    9|  1   9  25   81   49  225  121   729  625   441
   10|  1  10  21  100   55  210   91  1000  441   550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
   n      f(n)        n           f(n)
   1         0       16              4
   2         1       17            x^6
   3         x       21        x^3 + x
   4         2       25           2x^2
   5       x^2       27             3x
   6     x + 1       35      x^3 + x^2
   7       x^3       36         2x + 2
   8         3       49           2x^3
   9        2x       55      x^4 + x^2
  10   x^2 + 1       64              6
  11       x^4       77      x^4 + x^3
  12     x + 2       81             4x
  13       x^5       90   x^2 + 2x + 1
  15   x^2 + x       91      x^5 + x^3
(End)
		

Crossrefs

Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.

Programs

  • PARI
    T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))

Formula

T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)

Extensions

New name from Peter Munn, Jul 17 2021

A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 6, 6, 4, 5, 8, 5, 8, 5, 6, 10, 12, 12, 10, 6, 7, 5, 15, 9, 15, 5, 7, 8, 14, 10, 20, 20, 10, 14, 8, 9, 12, 21, 24, 7, 24, 21, 12, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 15, 27, 18, 35, 15, 35, 18, 27, 15, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33, 40, 45, 20, 11, 20, 45, 40, 33, 24, 13
Offset: 1

Views

Author

Peter Munn, Jan 21 2020

Keywords

Comments

As a binary operation, this sequence defines a commutative monoid over the positive integers that is isomorphic to multiplication. The self-inverse permutation A225546(.) provides an isomorphism. This monoid therefore has unique factorization. Its primes are the even terms of A050376: 2, 4, 16, 256, ..., which in standard integer multiplication are the powers of 2 with powers of 2 as exponents.
In this monoid, in contrast, the powers of 2 run through the squarefree numbers, the k-th power of 2 being A019565(k). 4 is irreducible and its powers are the squares of the squarefree numbers, the k-th power of 4 being A019565(k)^2 (where "^2" denotes standard integer squaring); and so on with powers of 16, 256, ...
In many cases the product of two numbers is the same here as in standard integer multiplication. See the formula section for details.

Examples

			From _Antti Karttunen_, Feb 02 2020: (Start)
The top left 16 X 16 corner of the array:
   1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16, ...
   2,  3,  6,  8, 10,  5,  14,  12,  18,  15,  22,  24,  26,  21,  30,  32, ...
   3,  6,  5, 12, 15, 10,  21,  24,  27,  30,  33,  20,  39,  42,   7,  48, ...
   4,  8, 12,  9, 20, 24,  28,  18,  36,  40,  44,  27,  52,  56,  60,  64, ...
   5, 10, 15, 20,  7, 30,  35,  40,  45,  14,  55,  60,  65,  70,  21,  80, ...
   6,  5, 10, 24, 30, 15,  42,  20,  54,   7,  66,  40,  78,  35,  14,  96, ...
   7, 14, 21, 28, 35, 42,  11,  56,  63,  70,  77,  84,  91,  22, 105, 112, ...
   8, 12, 24, 18, 40, 20,  56,  27,  72,  60,  88,  54, 104,  84, 120, 128, ...
   9, 18, 27, 36, 45, 54,  63,  72,  25,  90,  99, 108, 117, 126, 135, 144, ...
  10, 15, 30, 40, 14,  7,  70,  60,  90,  21, 110, 120, 130, 105,  42, 160, ...
  11, 22, 33, 44, 55, 66,  77,  88,  99, 110,  13, 132, 143, 154, 165, 176, ...
  12, 24, 20, 27, 60, 40,  84,  54, 108, 120, 132,  45, 156, 168,  28, 192, ...
  13, 26, 39, 52, 65, 78,  91, 104, 117, 130, 143, 156,  17, 182, 195, 208, ...
  14, 21, 42, 56, 70, 35,  22,  84, 126, 105, 154, 168, 182,  33, 210, 224, ...
  15, 30,  7, 60, 21, 14, 105, 120, 135,  42, 165,  28, 195, 210,  35, 240, ...
  16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,  81, ...
(End)
		

Crossrefs

Isomorphic to A003991 with A225546 as isomorphism.
Cf. A003961(main diagonal), A048675, A059895, A059896, A059897.
Rows/columns, sorted in ascending order: 2: A000037, 3: A028983, 4: A252849.
A019565 lists powers of 2 in order of increasing exponent.
Powers of k, sorted in ascending order: k=2: A005117, k=3: A056911, k=4: A062503, k=5: A276378, k=6: intersection of A325698 and A005117, k=7: intersection of A007775 and A005117, k=8: A062838.
Irreducibles are A001146 (even terms of A050376).

Programs

  • PARI
    up_to = 1275;
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331590sq(x,y) = if(1==x,y,if(1==y,x, my(fx=factor(x),fy=factor(y),u=max(#binary(vecmax(fx[, 2])),#binary(vecmax(fy[, 2]))),prodsx=vector(u,x,1),m=1); for(i=1,u,for(k=1,#fx~, if(bitand(fx[k,2],m),prodsx[i] *= fx[k,1])); for(k=1,#fy~, if(bitand(fy[k,2],m),prodsx[i] *= fy[k,1])); m<<=1); prod(i=1,u,A019565(A048675(prodsx[i]))^(1<<(i-1)))));
    A331590list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A331590sq(col,(a-(col-1))))); (v); };
    v331590 = A331590list(up_to);
    A331590(n) = v331590[n]; \\ Antti Karttunen, Feb 02 2020

Formula

Alternative definition: A(n,1) = n; A(n,k) = A(A059897(n,k), A003961(A059895(n,k))).
Main derived identities: (Start)
A(n,k) = A(k,n).
A(1,n) = n.
A(n, A(m,k)) = A(A(n,m), k).
A(m,m) = A003961(m).
A(n^2, k^2) = A(n,k)^2.
A(A003961(n), A003961(k)) = A003961(A(n,k)).
A(A019565(n), A019565(k)) = A019565(n+k).
(End)
Characterization of conditions for A(n,k) = n * k: (Start)
The following 4 conditions are equivalent:
(1) A(n,k) = n * k;
(2) A(n,k) = A059897(n,k);
(3) A(n,k) = A059896(n,k);
(4) A059895(n,k) = 1.
If gcd(n,k) = 1, A(n,k) = n * k.
If gcd(n,k) = 1, A(A225546(n), A225546(k)) = A225546(n) * A225546(k).
The previous formula implies A(n,k) = n * k in the following cases:
(1) for n = A005117(m), k = j^2;
(2) more generally for n = A005117(m_1)^(2^i_1), k = A005117(m_2)^(2^i_2), with A004198(i_1, i_2) = 0.
(End)
Showing 1-10 of 26 results. Next