A059912 Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n).
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855
Offset: 1
Examples
There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127. Triangle T(n,k) begins: 1; 3; 7; 5, 15; 31; 9, 21, 63; 127; 17, 51, 85, 255; 73, 511; 11, 33, 93, 341, 1023; ...
Links
- Alois P. Heinz, Rows n = 1..71, flattened
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- XIAO Gang, Polynomial order: computes the order of an irreducible polynomial over a finite field GF(p), WIMS.
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n) option remember; divisors(2^n-1) minus U(n-1) end: U:= proc(n) option remember; `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..20); # Alois P. Heinz, May 31 2012
-
Mathematica
m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-François Alcover, Jun 14 2012, after Alois P. Heinz *)
-
PARI
maxDegree=26;for(n=1,maxDegree,forstep(d=1,2^n,2,znorder(Mod(2,d))==n&&print1(d,", "))) \\ inefficient, Jeppe Stig Nielsen, Feb 13 2020
Formula
T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012
Comments