cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059926 Length of period of the continued fraction expansion of sqrt(2^n+1).

Original entry on oeis.org

1, 4, 1, 10, 1, 16, 1, 44, 1, 74, 1, 46, 1, 204, 1, 714, 1, 702, 1, 908, 1, 404, 1, 7754, 1, 1136, 1, 9886, 1, 8154, 1, 23578, 1, 65096, 1, 404762, 1, 23992, 1, 3514774, 1, 110124, 1, 4802160, 1, 6490450, 1, 180832, 1, 115972, 1, 770304, 1, 62665998, 1, 133093360, 1, 1019300318, 1, 60079334
Offset: 4

Views

Author

Labos Elemer, Mar 01 2001

Keywords

Comments

For n=1,2 a(1)=2, a(2)=1; for n=3 it is not a quadratic surd.

Examples

			For n=7 and n=8 the periods after the transient are as follows: cfrac(sqrt(2^7+1),'periodic','quotients'); gives [[11], [2, 1, 3, 1, 6, 1, 3, 1, 2, 22]] cfrac(sqrt(2^8+1),'periodic','quotients'); gives [[16], [32]]
		

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(nops(cfrac(sqrt(2^k+1),'periodic','quotients')[2]),k=4..28)];
  • Mathematica
    Table[Length[ContinuedFraction[Sqrt[2^n+1]][[2]]],{n,4,60}] (* Harvey P. Dale, Feb 05 2012 *)

Formula

a(n) = A003285(A000051(n)). - Michel Marcus, Sep 27 2019

Extensions

Two more terms from David W. Wilson, Jun 18 2001
Corrected and extended by Naohiro Nomoto, Nov 09 2001
a(58)-a(63) from Daniel Suteu, Jan 25 2019