cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059930 Numbers n such that n and n^2 combined use different digits.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 17, 18, 24, 29, 53, 54, 57, 59, 72, 79, 84, 209, 259, 567, 807, 854
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2001

Keywords

Comments

There are exactly 22 solutions in base 10.
More precisely: the concatenation of n and n^2 does not contain any digit twice. - M. F. Hasler, Oct 16 2018
a(20) = 567 and a(22) = 854 are the only two numbers k such that k and k^2 combined use each of the digits 1 to 9 exactly once (reference David Wells): 567^2 = 321489 and 854^2 = 729316. - Bernard Schott, Mar 23 2021

References

  • M. Kraitchik, Mathematical Recreations, p. 48, Problem 12. - From N. J. A. Sloane, Mar 15 2013
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, 1997, page 144, entry 567.

Crossrefs

Cf. A059931, A029783 (digits of n are not present in n^2), A112736 (numbers whose squares are exclusionary).

Programs

  • Maple
    M:=1000;
    a1:=[]; a2:=[];
    for n from 1 to M do
    # are digits of n and n^2 distinct?
    t1:=convert(n,base,10);
    t2:=convert(n^2,base,10);
    s3:={op(t1),op(t2)};
    if nops(t1)+nops(t2) = nops(s3) then a1:=[op(a1),n]; a2:=[op(a2),n^2]; fi;
    od:
    a1; a2;
    # N. J. A. Sloane, Mar 15 2013
  • Mathematica
    Select[Range[10000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} && Length[Union[IntegerDigits[ # ], IntegerDigits[ #^2]]] == Length[IntegerDigits[ # ]] + Length[IntegerDigits[ #^2]] &] (* Tanya Khovanova, Dec 25 2006 *)
    Select[Range[10^3], Union@ Tally[Flatten@ IntegerDigits@ {#, #^2}][[All, -1]] == {1} &] (* Michael De Vlieger, Oct 17 2018 *)
  • PARI
    select( is(n)=#Set(Vecsmall(n=Str(n,n^2)))==#n, [1..999]) \\ M. F. Hasler, Oct 16 2018