cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059977 a(n) = binomial(n+2, 2)^4.

Original entry on oeis.org

1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625, 18974736, 37015056, 68574961, 121550625, 207360000, 342102016, 547981281, 855036081, 1303210000, 1944810000, 2847396321, 4097152081, 5802782976, 8100000000, 11156640625, 15178486401
Offset: 0

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

Comments

Number of 4-dimensional cage assemblies.
See Chap. 61, "Hyperspace Prisons", of C. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers."

Examples

			1 = (1 + 1)/2, 81 = (33 + 129)/2, 1296 = (276 + 2316)/2, 10000 = (1300 + 18700)/2, ... - _Philippe Deléham_, May 25 2015
		

References

  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

Crossrefs

Cf. A168364 (first differences).

Programs

  • Maple
    with (combinat):seq(mul(stirling2(n+1,n),k=1..4),n=1..24); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    m = 4; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 30} ]
  • PARI
    a(n) = { ((n + 1)*(n + 2)/2)^4 } \\ Harry J. Smith, Jun 30 2009
  • Sage
    [stirling_number2(n+1,n)^4for n in range(1,25)] # Zerinvary Lajos, Mar 14 2009
    

Formula

L(n) = ((n^m)(n + 1)^m)/(2^m) where m is the dimension, which in this case is 4.
O.g.f.: -(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6)/(-1+x)^9. - R. J. Mathar, Mar 31 2008
a(n) = A000217(n+1)^4. - R. J. Mathar, Dec 13 2011
a(n) = (A000539(n+1) + A000541(n+1))/2. - Philippe Deléham, May 25 2015
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 160*Pi^2/3 + 16*Pi^4/45 - 560.
Sum_{n>=0} (-1)^n/a(n) = 560 - 640*log(2) - 96*zeta(3). (End)

Extensions

Better definition from Zerinvary Lajos, May 23 2006