cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059980 Number of 8-dimensional cage assemblies.

Original entry on oeis.org

1, 6561, 1679616, 100000000, 2562890625, 37822859361, 377801998336, 2821109907456, 16815125390625, 83733937890625, 360040606269696, 1370114370683136, 4702525276151521, 14774554437890625, 42998169600000000, 117033789351264256, 300283484326400961
Offset: 1

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

References

  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

Crossrefs

Programs

  • Mathematica
    m = 8; Table[n^m (n + 1)^m/2^m, {n, 1, 18}]

Formula

G.f.: -x*(x^14 +6544*x^13 +1568215*x^12 +72338144*x^11 +1086859301*x^10 +6727188848*x^9 +19323413187*x^8 +27306899520*x^7 +19323413187*x^6 +6727188848*x^5 +1086859301*x^4 +72338144*x^3 +1568215*x^2 +6544*x +1)/(x-1)^17. - Colin Barker, Jul 09 2012
From Peter Bala, Jul 02 2019 (Start)
a(n) = (n*(n + 1)/2)^8.
a(n) = (1/16)*( S(9,n) + 7*S(11,n) + 7*S(13,n) + S(15,n) ), where S(r,n) = Sum_{k = 1..n} k^r. Cf. A059977 and A059978. (End)
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 146432*Pi^2 + 5632*Pi^4/3 + 2048*Pi^6/105 + 256*Pi^8/4725 - 1647360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1647360 - 1757184*log(2) - 304128*zeta(3) - 57600*zeta(5) - 4032*zeta(7). (End)

A249076 a(n) = (n*(n+1))^6.

Original entry on oeis.org

0, 64, 46656, 2985984, 64000000, 729000000, 5489031744, 30840979456, 139314069504, 531441000000, 1771561000000, 5289852801024, 14412774445056, 36343632130624, 85766121000000, 191102976000000, 404961208827904, 820972403643456, 1600135042849344, 3010936384000000, 5489031744000000
Offset: 0

Views

Author

Jiwoo Lee, Oct 20 2014

Keywords

Crossrefs

Cf. A059978; A002378: n*(n+1); A035282: n^2 *(n+1)^2; A060459: n^3 *(n+1)^3; A248619: n^4 *(n+1)^4;

Programs

  • Magma
    [(n*(n+1))^6: n in [0..30]];
    
  • Maple
    [ seq(n^6*(n+1)^6, n = 0..100) ];
  • Mathematica
    Table[(n (n + 1))^6, {n, 0, 70}] (* or *)
    CoefficientList[Series[64*x*(x^10 + 716 x^9 + 37257 x^8 + 450048 x^7 + 1822014 x^6 + 2864328 x^5 + 1822014 x^4 + 450048 x^3 + 37257 x^2 + 716 x + 1)/(1 - x)^13, {x, 0, 30}], x]
  • PARI
    a(n)=(n*(n+1))^6 \\ Charles R Greathouse IV, Oct 21 2014

Formula

a(n) = A002378(n)^6.
a(n) = 64*A059978(n) for n>0.
G.f.: 64*x*(x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 + 2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1 - x)^13. [corrected by Georg Fischer, May 10 2019]
Sum_{n>=1} 1/a(n) = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945. - Vaclav Kotesovec, Sep 25 2019

Extensions

Incorrect term corrected by Colin Barker, Oct 21 2014
Terms a(21) and beyond corrected by Andrew Howroyd, Feb 22 2018

A091480 Table of multigraphs (by antidiagonals) with n (>=1) nodes and k (>=0) edges. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 6, 1, 0, 1, 27, 36, 10, 1, 0, 1, 81, 216, 100, 15, 1, 0, 1, 243, 1296, 1000, 225, 21, 1, 0, 1, 729, 7776, 10000, 3375, 441, 28, 1, 0, 1, 2187, 46656, 100000, 50625, 9261, 784, 36, 1, 0, 1, 6561, 279936, 1000000, 759375
Offset: 1

Views

Author

Christian G. Bower, Jan 13 2004

Keywords

Examples

			1  0   0    0     0 ...
1  1   1    1     1 ...
1  3   9   27    81 ...
1  6  36  216  1296 ...
1 10 100 1000 10000 ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).

Crossrefs

Columns 0-8: A000012, A000217(n-1), A000537(n-1), A059827(n-1), A059977(n-1), A059860(n-1), A059978(n-1), A059979(n-1), A059980(n-1).
Cf. A091478.

Formula

a(n, k) = binomial(n, 2)^k.
Showing 1-3 of 3 results.