cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060041 Certain numbers a(n) related to Gromov-Witten invariants N_n in dimension n (see formula (7.45) on p. 202 of Cox and Katz).

Original entry on oeis.org

5, 2875, 609250, 317206375, 242467530000, 229305888887625, 248249742118022000, 295091050570845659250, 375632160937476603550000, 503840510416985243645106250, 704288164978454686113488249750, 1017913203569692432490203659468875, 1512323901934139334751675234074638000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

These integers are actually instanton numbers (or BPS states degeneracies). - Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004
Equal to the number of degree-n rational curves on a general quintic for n <= 9, but not for n = 10 (see A076912).

Examples

			G.f. = 5 + 2875*x + 609250*x^2 + 317206375*x^3 + 242467530000*x^4 + ...
		

References

  • J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151-232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
  • D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.

Crossrefs

Programs

  • Mathematica
    nn=20; y0[x_]:=Sum[(5n)!/(n!)^5 x^n, {n, 0, nn}]; y1[x_]:=Sum[((5n)!/(n!)^5 5 Sum[1/j, {j, n+1, 5n}]) x^n, {n, 0, nn}]; qq=Series[x Exp[y1[x]/y0[x]], {x, 0, nn}]; x[q_]=InverseSeries[qq, q]; s1=(q/x[q] D[x[q], q])^3 5/((1-5^5 x[q]) y0[x[q]]^2); s2=Series[5+Sum[n[d] d^3 q^d/(1-q^d), {d, 1, nn}], {q, 0, nn}]; sol=Solve[s1==s2]; t=Table[n[d]/.sol, {d, 1, nn}]//Flatten; (* Daniel Grunberg (grunberg(AT)mpim-bonn.mpg.de), Aug 18 2004 *)
  • PARI
    {a(n) = local(A1, A2, A3); if( n<1, 5*(n==0), A1 = sum( k=0, n, (5*k)! / k!^5 * (-x)^k, x * O(x^n)); A2 = -x * exp(5 / A1 * sum( k=0, n, (sum( i=1, 5*k, 1/i) - sum( i=1, k, 1/i)) * (5*k)! / k!^5 * (-x)^k, x * O(x^n))); A3 = subst(5 / A1^2 / (1 + 5^5*x) / (x * A2'/A2)^3, x, serreverse(A2)); sumdiv( n, k, moebius(n / k) * polcoeff(A3, k))/n^3)}; /* Michael Somos, Mar 27 2004 */
    
  • PARI
    cumsum(v) = for(i=2, #v, v[i] += v[i-1]); v;
    A060345_list(N) = {
      my(x = 'x + O('x^(N+1)), h = cumsum(vector(5*N, n, 1/n)),
         y0 = sum(n=0, N, (5*n)!/n!^5 * x^n),
         y1 = 5 * sum(n = 1, N, ((5*n)!/n!^5 * (h[5*n] - h[n])) * x^n),
         Qx = x * exp(y1/y0), Xq = serreverse(Qx));
      Vec(5 * (x * Xq'/Xq)^3 / ((1 - 3125*Xq) * sqr(subst(y0, 'x, Xq))));
    };
    seq(N) = {
      my(v1 = A060345_list(N+1),
         v2 = dirmul(vector(N, n, moebius(n)), vector(N, n, v1[n+1])));
      concat(5, vector(#v2, n, v2[n]/n^3));
    };
    seq(20)  \\ Gheorghe Coserea, Jul 28 2016