A060046 Generalized sum of divisors function: third diagonal of A060047.
1, 2, 4, 8, 14, 24, 40, 56, 84, 122, 168, 232, 312, 408, 528, 672, 865, 1078, 1336, 1648, 2002, 2424, 2912, 3472, 4116, 4872, 5744, 6648, 7752, 8976, 10304, 11872, 13566, 15424, 17556, 19896, 22414, 25256, 28336, 31584, 35462, 39482, 43728, 48664
Offset: 9
Links
- Seiichi Manyama, Table of n, a(n) for n = 9..10000
- G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
Crossrefs
Cf. A015128.
Programs
-
Mathematica
nmax = 60; Drop[CoefficientList[Series[-1/3 * Sum[(-1)^k*k*Binomial[k + 2, 5]*x^(k^2), {k, 3, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 9] (* Vaclav Kotesovec, Jul 30 2025 *)
Formula
G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum((x^(2*n-1)/(1-x^(2*n-1))^2)^i,n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: -(1/3) * ( Sum_{k>=3} (-1)^k * k * binomial(k+2,5) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). - Seiichi Manyama, Sep 15 2023
Extensions
More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007