cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060046 Generalized sum of divisors function: third diagonal of A060047.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 56, 84, 122, 168, 232, 312, 408, 528, 672, 865, 1078, 1336, 1648, 2002, 2424, 2912, 3472, 4116, 4872, 5744, 6648, 7752, 8976, 10304, 11872, 13566, 15424, 17556, 19896, 22414, 25256, 28336, 31584, 35462, 39482, 43728, 48664
Offset: 9

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Crossrefs

Cf. A015128.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[-1/3 * Sum[(-1)^k*k*Binomial[k + 2, 5]*x^(k^2), {k, 3, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 9] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum((x^(2*n-1)/(1-x^(2*n-1))^2)^i,n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: -(1/3) * ( Sum_{k>=3} (-1)^k * k * binomial(k+2,5) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007