A060049 Triangulations of an n-gon such that each internal vertex has valence at least 6, i.e., nonpositively curved triangulations.
1, 0, 1, 1, 2, 5, 15, 50, 181, 697, 2821, 11892, 51874, 232974, 1073070, 5053029, 24264565, 118570292, 588567257, 2963358162, 15114174106, 78004013763, 406971280545, 2144659072330, 11407141925639, 61197287846831
Offset: 0
Examples
a(6) = 15 because there are 14 = A000108(4) triangulations without internal vertices, plus the triangulation with 6 pie slices.
Links
- Bruce Westbury, Table of n, a(n) for n = 0..39
- Greg Kuperberg, Spiders for rank 2 Lie algebras, arXiv:q-alg/9712003, 1997.
- Greg Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), 109-151.
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, arXiv:math/0507112 [math.CO], 2005.
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, J. Algebraic Combin. 25 (2007)
Crossrefs
Cf. A059710.
Formula
The g.f. B(x) is derived from the g.f. A(x) of A059710 by A(x) = A(x*B(x))+1.
Comments