A060051 Number of n-block r-bicoverings.
1, 0, 0, 2, 79, 82117, 4936900199, 27555467226181396, 20554872166566046969648895, 2786548447182420815380482508924733911, 89607283195144164483079065133414172790220498449945, 864608448649084311874549352448884076627916391005243593208944730790
Offset: 0
Examples
There are 2 3-block r-bicoverings: {{1},{2},{1,2}} and {{1,2},{1,3},{2,3}}.
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..30
Formula
E.g.f. for number of n-block r-bicoverings of a k-set is exp(-x-1/2*x^2*y)*Sum_{i=0..inf} (1+y)^binomial(i, 2)*x^i/i!.
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020
Comments