cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060052 Triangle read by rows: T(n,k) gives number of r-bicoverings of an n-set with k blocks, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

1, 1, 4, 0, 15, 25, 3, 0, 30, 222, 226, 40, 0, 30, 1230, 3670, 2706, 535, 15, 0, 0, 5040, 39900, 69450, 40405, 8141, 420, 0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105, 0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040
Offset: 2

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is r-bicovering if intersection of every two blocks contains at most one element.

Examples

			Triangle starts:
[1],
[1, 4],
[0, 15, 25, 3],
[0, 30, 222, 226, 40],
[0, 30, 1230, 3670, 2706, 535, 15],
[0, 0, 5040, 39900, 69450, 40405, 8141, 420],
[0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105],
[0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums are A060053.
Column sums are A060051.

Programs

  • PARI
    \\ returns k-th column as vector.
    C(k)=if(k<3, [], Vecrev(serlaplace(polcoef(exp(-x-1/2*x^2*y + O(x*x^k))*sum(i=0, 3*k\2, (1+y)^binomial(i, 2)*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=exp(-x-1/2*x^2*y + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 2)*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f.: A(x, y) = exp(-x-1/2*x^2*y)*Sum_{i>=0} (1+y)^binomial(i, 2)*x^i/i!.
T(n, k) = (n!/k!) * A276640(k, n). - David Pasino, Sep 22 2016
T(n,k) = 0 for n > binomial(k,2). - Andrew Howroyd, Jan 30 2020

Extensions

Zeros inserted into data by Andrew Howroyd, Jan 30 2020