cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060058 Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 1, 14, 61, 61, 1, 30, 331, 1385, 1385, 1, 55, 1211, 12284, 50521, 50521, 1, 91, 3486, 68060, 663061, 2702765, 2702765, 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981, 1, 204, 18522, 948002, 28862471, 510964090, 4798037791, 19391512145, 19391512145
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,   1;
  [2] 1,   5,    5;
  [3] 1,  14,   61,     61;
  [4] 1,  30,  331,   1385,    1385;
  [5] 1,  55, 1211,  12284,   50521,    50521;
  [6] 1,  91, 3486,  68060,  663061,  2702765,   2702765;
  [7] 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981;
  ...
		

Crossrefs

Cf. A060059 (row sums), A000364 (main diagonal Euler numbers).
Columns: A000012 (powers of 1), A000330 (sum of squares), A060060-2 for m=0,...,4.
See triangle A060074.

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)^2 * T(n, k - 1) + T(n - 1, k) fi fi end:
    seq(print(seq(T(n, k), k=0..n)), n=0..7);  # Peter Luschny, Sep 30 2023
  • Mathematica
    a[, -1] = 0; a[0, 0] = 1; a[n, m_] /; n < m = 0; a[n_, m_] := a[n, m] = a[n-1, m] + (n+1-m)^2*a[n, m-1]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)

Formula

a(n, m) = a(n-1, m) + ((n+1-m)^2)*a(n, m-1), a(n, -1) := 0, a(0, 0) = 1, a(n, m) = 0 if n < m.
a(n, m) = ay(n-m+1, m) if n >= m >= 0, with the rectangular array ay(n, m) := Sum_{j=1..n} (j^2)*ay(j+1, m-1), n >= 0, m >= 1; input: ay(n, 0)=1 (iterated sums of squares).
G.f. for m-th column: 1/(1-x) for m=0, (x^m)*(Sum_{k=0..m} A060063(m, k)*x^k)/(1-x)^(3*m+1), m >= 1.
Recursion for g.f.s for m-th column: (1-x)*G(m, x) = x*G''(m-1, x) - G'(m-1, x) + G(m-1, x)/x, m >= 2; G(1, x) = x*(1+x)/(1-x)^4; the apostrophe denotes differentiation w.r.t. x. G(0, x) = 1/(1-x). - Wolfdieter Lang, Feb 13 2004