A060058 Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).
1, 1, 1, 1, 5, 5, 1, 14, 61, 61, 1, 30, 331, 1385, 1385, 1, 55, 1211, 12284, 50521, 50521, 1, 91, 3486, 68060, 663061, 2702765, 2702765, 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981, 1, 204, 18522, 948002, 28862471, 510964090, 4798037791, 19391512145, 19391512145
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 1, 1; [2] 1, 5, 5; [3] 1, 14, 61, 61; [4] 1, 30, 331, 1385, 1385; [5] 1, 55, 1211, 12284, 50521, 50521; [6] 1, 91, 3486, 68060, 663061, 2702765, 2702765; [7] 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981; ...
Links
- Wolfdieter Lang, First 9 rows.
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)^2 * T(n, k - 1) + T(n - 1, k) fi fi end: seq(print(seq(T(n, k), k=0..n)), n=0..7); # Peter Luschny, Sep 30 2023
-
Mathematica
a[, -1] = 0; a[0, 0] = 1; a[n, m_] /; n < m = 0; a[n_, m_] := a[n, m] = a[n-1, m] + (n+1-m)^2*a[n, m-1]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
Formula
a(n, m) = a(n-1, m) + ((n+1-m)^2)*a(n, m-1), a(n, -1) := 0, a(0, 0) = 1, a(n, m) = 0 if n < m.
a(n, m) = ay(n-m+1, m) if n >= m >= 0, with the rectangular array ay(n, m) := Sum_{j=1..n} (j^2)*ay(j+1, m-1), n >= 0, m >= 1; input: ay(n, 0)=1 (iterated sums of squares).
G.f. for m-th column: 1/(1-x) for m=0, (x^m)*(Sum_{k=0..m} A060063(m, k)*x^k)/(1-x)^(3*m+1), m >= 1.
Recursion for g.f.s for m-th column: (1-x)*G(m, x) = x*G''(m-1, x) - G'(m-1, x) + G(m-1, x)/x, m >= 2; G(1, x) = x*(1+x)/(1-x)^4; the apostrophe denotes differentiation w.r.t. x. G(0, x) = 1/(1-x). - Wolfdieter Lang, Feb 13 2004