cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060093 Number of 5-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 125, 722, 2565, 7180, 17335, 37750, 76093, 144340, 260590, 451440, 755040, 1224964, 1935050, 2985380, 4509590, 6683720, 9736835, 13963670, 19739575, 27538060, 37951265, 51713706, 69729675, 93104700, 123181500
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=5 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 9, 9) - 5*binomial(n + 5, 5) - 10*binomial(n + 3, 3) + 20*binomial(n + 2, 2) + 30*binomial(n + 1, 1) - 60*binomial(n, 0) + 24*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+9, 9) - 5*binomial(n+5, 5) - 10*binomial(n+3, 3) + 20*binomial(n+2, 2) + 30*binomial(n+1, 1) - 60*binomial(n, 0) + 24*binomial(n-1, -1).
G.f.: y^4*(-528*y + 125 + 970*y^2 - 980*y^3 + 570*y^4 - 180*y^5 + 24*y^6)/(-1 + y)^10.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n-1) *(n-2) *(n-3) *(n^6 + 51*n^5 + 1165*n^4 + 15885*n^3 + 130954*n^2 + 660504*n + 1451520)/ 362880, n > 0. - R. J. Mathar, Aug 10 2017