cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060102 Bisection of triangle A060098: even-indexed members of column sequences of A060098 (not counting leading zeros).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 8, 1, 1, 16, 30, 13, 1, 1, 25, 80, 71, 19, 1, 1, 36, 175, 259, 140, 26, 1, 1, 49, 336, 742, 660, 246, 34, 1, 1, 64, 588, 1806, 2370, 1442, 399, 43, 1, 1, 81, 960, 3906, 7062, 6292, 2828, 610, 53
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

Row sums give A052975. Column sequences without leading zeros give for m=0..5: A000012 (powers of 1), A000290 (squares), A002417(n+1), A060103-5.
Companion triangle (odd-indexed members) A060556.

Examples

			{1}; {1,1}; {1,4,1}; {1,9,8,1}; ... Pe(3,x) = 1 + 3*x.
		

Formula

a(n, m) = A060098(2*n-m, m).
a(n, m) = Sum_{j=0..floor((m+1)/2)} binomial((n-m)-j+2*m, 2*m)*binomial(m+1, 2*j), n >= m >= 0, otherwise zero.
G.f. for column m: (x^m)*Pe(m+1, x)/(1-x)^(2*m+1), with Pe(n, x) = Sum_{j=0..floor(n/2)} binomial(n, 2*j)*x^j (even members of row n of Pascal triangle A007318).

A060104 Fifth column (m=4) of triangle A060102.

Original entry on oeis.org

1, 19, 140, 660, 2370, 7062, 18348, 42900, 92235, 185185, 351208, 634712, 1100580, 1841100, 2984520, 4705464, 7237461, 10887855, 16055380, 23250700, 33120230, 46473570, 64314900, 87878700
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2n^2+10n+7) Binomial[n+6,6]/7,{n,0,30}] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{1,19,140,660,2370,7062,18348,42900,92235},30] (* Harvey P. Dale, Nov 08 2012 *)

Formula

a(n) = (2*n^2+10*n+7)*binomial(n+6, 6)/7.
G.f.: (1+10*x+5*x^2)/(1-x)^9.
a(0)=1, a(1)=19, a(2)=140, a(3)=660, a(4)=2370, a(5)=7062, a(6)=18348, a(7)=42900, a(8)=92235, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Nov 08 2012
Showing 1-2 of 2 results.