cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A060132 Positions of the permutations which have the same rank in A055089 and A060117, i.e., the fixed points of permutations A060119 and A060126.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 16, 17, 24, 25, 26, 27, 30, 31, 32, 33, 40, 41, 60, 61, 62, 63, 120, 121, 122, 123, 126, 127, 128, 129, 136, 137, 144, 145, 146, 147, 150, 151, 152, 153, 160, 161, 180, 181, 182, 183, 288, 289, 290, 291, 294, 295, 296, 297, 304, 305, 316
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Crossrefs

Cf. A060133. Includes A059590 as a subset and A064637 gives the terms that are not found therein.

Programs

  • Maple
    sub1 := n -> (n - 1); map(sub1,positions(0,[seq(PermRank3R(PermRevLexUnrank(n))-n,n=0..1024)])); or map(sub1,positions(0,[seq(PermRevLexRank(PermUnrank3R(n))-n,n=0..1024)]));

A060117 A list of all finite permutations in "PermUnrank3R" ordering. (Inverses of the permutations of A060118.)

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 3, 1, 1, 2, 4, 3, 2, 1, 4, 3, 1, 4, 2, 3, 4, 1, 2, 3, 4, 2, 1, 3, 2, 4, 1, 3, 1, 4, 3, 2, 4, 1, 3, 2, 1, 3, 4, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 2, 4, 2, 3, 1, 2, 4, 3, 1, 4, 3, 2, 1, 3, 4, 2, 1, 3, 2, 4, 1, 2, 3, 4, 1, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 3, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Comments

PermUnrank3R and PermUnrank3L are slight modifications of unrank2 algorithm presented in Myrvold-Ruskey article.

Examples

			In this table each row consists of A001563[n] permutations of (n+1) terms; i.e., we have (1/) 2,1/ 1,3,2; 3,1,2; 3,2,1; 2,3,1/ 1,2,4,3; 2,1,4,3;
Append to each an infinite number of fixed terms and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
		

Crossrefs

A060119 = Positions of these permutations in the "canonical list" A055089 (where also the rest of procedures can be found). A060118 gives position of the inverse permutation of each and A065183 positions after Foata transform.
Inversion vectors: A064039.

Programs

  • Maple
    with(group); permul := (a,b) -> mulperms(b,a); PermUnrank3R := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Raux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end; PermUnrank3Raux := proc(n,r,p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Raux(n-1, r-(s*((n-1)!)), permul(p,[[n,n-s]]))); fi; end;

Formula

[seq(op(PermUnrank3R(j)), j=0..)]; (Maple code given below)

A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Examples

			19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.
		

Crossrefs

Cf. A227130 (positions of even terms), A227132 (of odd terms).
The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.
Differs from similar A267263 for the first time at n=30.

Programs

  • Maple
    A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))
    fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;
    count_nonfixed := l -> convert(map(nops, l), `+`);
    positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;
    # For procedure PermUnrank3R see A060117
  • Mathematica
    Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)
  • Scheme
    (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))
    ;; Two other implementations, that use memoization-macro definec:
    (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))
    (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))
    ;; Antti Karttunen, Dec 30 2017

Formula

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).
a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).
a(n) = A060129(n) - A060128(n).
a(n) = A084558(n) - A257510(n).
a(n) = A275946(n) + A275962(n).
a(n) = A275948(n) + A275964(n).
a(n) = A055091(A060119(n)).
a(n) = A069010(A277012(n)) = A000120(A275727(n)).
a(n) = A001221(A275733(n)) = A001222(A275733(n)).
a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).
a(n) = A046660(A275725(n)).
a(A225901(n)) = a(n).
A257511(n) <= a(n) <= A034968(n).
A275806(n) <= a(n).
a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]
a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

Extensions

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

A060126 Positions of permutations of A055089 in the permutation sequence A060117.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 10, 14, 15, 12, 13, 16, 17, 23, 22, 19, 18, 21, 20, 24, 25, 26, 27, 29, 28, 30, 31, 32, 33, 35, 34, 38, 39, 36, 37, 40, 41, 47, 46, 43, 42, 45, 44, 54, 55, 56, 57, 59, 58, 48, 49, 50, 51, 53, 52, 60, 61, 62, 63, 65, 64, 67, 66, 71, 70, 68, 69
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Comments

Together with the inverse A060119 this can be used to conjugate between "multiplication tables" of A261096 & A261216 (and for example, their main diagonals A261099 & A261219, or between involutions A056019 & A060125, see the Formula section) that have been computed for these two common alternative orderings of permutations. - Antti Karttunen, Sep 28 2016

Crossrefs

Inverse: A060119.
Cf. A060132 (fixed points).

Programs

  • Maple
    # Procedure PermRank3R is given in A060125 and PermRevLexUnrank in A055089:
    A060126(n) = PermRank3R(PermRevLexUnrank(n));

Formula

Other identities. For all n >= 0:
a(A056019(A060119(n))) = A060125(n).

Extensions

Edited by Antti Karttunen, Sep 28 2016

A060120 Positions of permutations of A060118 in the canonical permutation list A055089.

Original entry on oeis.org

0, 1, 2, 4, 5, 3, 6, 7, 12, 18, 19, 13, 14, 20, 8, 10, 16, 22, 21, 15, 23, 17, 11, 9, 24, 25, 26, 28, 29, 27, 48, 49, 72, 96, 97, 73, 74, 98, 50, 52, 76, 100, 99, 75, 101, 77, 53, 51, 54, 55, 78, 102, 103, 79, 30, 31, 36, 42, 43, 37, 60, 66, 84, 108, 114, 90, 67, 61, 91
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Crossrefs

PermRevLexRank given in A056019. A060120[n] = A056019[A060119[n]] for all n.
Inverse permutation: A060127.

Formula

a(n) = PermRevLexRank(PermUnrank3L(n))

A261096 A(i,j) = rank (in A055089) of the composition of the i-th and the j-th permutation in table A055089, which lists all finite permutations in reversed colexicographic ordering.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 4, 3, 3, 4, 5, 0, 2, 4, 5, 2, 1, 5, 5, 5, 6, 3, 5, 4, 1, 4, 6, 7, 7, 4, 0, 0, 3, 7, 7, 8, 6, 12, 1, 3, 2, 8, 6, 8, 9, 10, 13, 13, 2, 1, 9, 10, 9, 9, 10, 11, 14, 12, 18, 0, 10, 11, 6, 8, 10, 11, 8, 15, 16, 19, 19, 11, 8, 7, 11, 11, 11, 12, 9, 16, 17, 20, 18, 0, 9, 11, 10, 7, 10, 12, 13, 18, 17, 14, 21, 22, 1, 1, 10, 6, 6, 9, 13, 13, 14, 19, 6, 15, 22, 23, 2, 0, 14, 7, 9, 8, 14, 12, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
A(i,j) gives the rank (in ordering used by table A055089) of the permutation which is obtained by composing permutations p and q listed as the i-th and the j-th permutation in irregular table A055089 (note that the identity permutation is the 0th). Here the convention is that "permutations act of the left", thus, if p1 and p2 are permutations, then the product of p1 and p2 (p1 * p2) is defined such that (p1 * p2)(i) = p1(p2(i)) for i=1...
Each row and column is a permutation of A001477, because this is the Cayley table ("multiplication table") of an infinite enumerable group, namely, that subgroup of the infinite symmetric group (S_inf) which consists of permutations moving only finite number of elements.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  4,  5,  2,  3,  7,  6, 10, 11,  8,  9, 18, ...
   2,  3,  0,  1,  5,  4, 12, 13, 14, 15, 16, 17,  6, ...
   3,  2,  5,  4,  0,  1, 13, 12, 16, 17, 14, 15, 19, ...
   4,  5,  1,  0,  3,  2, 18, 19, 20, 21, 22, 23,  7, ...
   5,  4,  3,  2,  1,  0, 19, 18, 22, 23, 20, 21, 13, ...
   6,  7,  8,  9, 10, 11,  0,  1,  2,  3,  4,  5, 14, ...
   7,  6, 10, 11,  8,  9,  1,  0,  4,  5,  2,  3, 20, ...
   8,  9,  6,  7, 11, 10, 14, 15, 12, 13, 17, 16,  0, ...
   9,  8, 11, 10,  6,  7, 15, 14, 17, 16, 12, 13, 21, ...
  10, 11,  7,  6,  9,  8, 20, 21, 18, 19, 23, 22,  1, ...
  11, 10,  9,  8,  7,  6, 21, 20, 23, 22, 18, 19, 15, ...
  12, 13, 14, 15, 16, 17,  2,  3,  0,  1,  5,  4,  8, ...
  ...
For A(1,2) (row=1, column=2, both starting from zero), we take as permutation p the permutation which has rank=1 in the ordering used by A055089, which is a simple transposition (1 2), which we can extend with fixed terms as far as we wish (e.g., like {2,1,3,4,5,...}), and as permutation q we take the permutation which has rank=2 (in the same list), which is {1,3,2}. We compose these from the left, so that the latter one, q, acts first, thus c(i) = p(q(i)), and the result is permutation {2,3,1}, which is listed as the 4th one in A055089, thus A(1,2) = 4.
For A(2,1) we compose those two permutations in opposite order, as d(i) = q(p(i)), which gives permutation {3,1,2} which is listed as the 3rd one in A055089, thus A(2,1) = 3.
		

Crossrefs

Transpose: A261097.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A261098.
Column 1: A004442.
Main diagonal: A261099.
Cf. tables A055089, A195663.
Cf. also A261216, A261217 (similar arrays, but using different orderings of permutations).
Permutations used in conjugation-formulas: A056019, A060119, A060120, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A056019(A261097(A056019(i),A056019(j))).
A(i,j) = A060119(A261216(A060126(i),A060126(j))).
A(i,j) = A060120(A261217(A060127(i),A060127(j))).

A261216 A(i,j) = rank (in A060117) of the composition of the i-th and the j-th permutation in table A060117, which lists all finite permutations.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 5, 3, 3, 4, 4, 0, 2, 4, 5, 3, 1, 4, 5, 5, 6, 2, 5, 5, 3, 4, 6, 7, 7, 4, 1, 2, 1, 7, 7, 8, 6, 14, 0, 0, 0, 8, 6, 8, 9, 11, 15, 15, 1, 2, 9, 11, 9, 9, 10, 10, 12, 14, 22, 3, 10, 10, 6, 8, 10, 11, 9, 13, 16, 23, 23, 11, 9, 7, 10, 11, 11, 12, 8, 17, 17, 21, 22, 0, 8, 11, 11, 9, 10, 12, 13, 19, 16, 13, 20, 19, 1, 1, 10, 7, 8, 7, 13, 13, 14, 18, 8, 12, 18, 18, 2, 0, 12, 6, 6, 6, 14, 12, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
A(i,j) gives the rank of the permutation (in ordering used by table A060117) which is obtained by composing permutations p and q listed as the i-th and the j-th permutation in irregular table A060117 (note that the identity permutation is the 0th). Here the convention is that "permutations act of the left", thus, if p1 and p2 are permutations, then the product of p1 and p2 (p1 * p2) is defined such that (p1 * p2)(i) = p1(p2(i)) for i=1...
Equally, A(i,j) gives the rank in A060118 of the composition of the i-th and the j-th permutation in A060118, when convention is that "permutations act on the right".
Each row and column is a permutation of A001477, because this is the Cayley table ("multiplication table") of an infinite enumerable group, namely, that subgroup of the infinite symmetric group (S_inf) which consists of permutations moving only finite number of elements.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  5,  4,  3,  2,  7,  6, 11, 10,  9,  8, 19, ...
   2,  3,  0,  1,  5,  4, 14, 15, 12, 13, 17, 16,  8, ...
   3,  2,  4,  5,  1,  0, 15, 14, 16, 17, 13, 12, 21, ...
   4,  5,  3,  2,  0,  1, 22, 23, 21, 20, 18, 19, 16, ...
   5,  4,  1,  0,  2,  3, 23, 22, 19, 18, 20, 21, 11, ...
   6,  7,  8,  9, 10, 11,  0,  1,  2,  3,  4,  5, 14, ...
   7,  6, 11, 10,  9,  8,  1,  0,  5,  4,  3,  2, 23, ...
   8,  9,  6,  7, 11, 10, 12, 13, 14, 15, 16, 17,  2, ...
   9,  8, 10, 11,  7,  6, 13, 12, 17, 16, 15, 14, 20, ...
  10, 11,  9,  8,  6,  7, 18, 19, 20, 21, 22, 23, 17, ...
  11, 10,  7,  6,  8,  9, 19, 18, 23, 22, 21, 20,  5, ...
  12, 13, 14, 15, 16, 17,  8,  9,  6,  7, 11, 10,  0, ...
  ...
For A(1,2) (row=1, column=2, both starting from zero), we take as permutation p the permutation which has rank=1 in the ordering used by A060117, which is a simple transposition (1 2), which we can extend with fixed terms as far as we wish (e.g., like {2,1,3,4,5,...}), and as permutation q we take the permutation which has rank=2 (in the same list), which is {1,3,2}. We compose these from the left, so that the latter one, q, acts first, thus c(i) = p(q(i)), and the result is permutation {2,3,1}, which is listed as the 5th one in A060117, thus A(1,2) = 5.
For A(2,1) we compose those two permutations in opposite order, as d(i) = q(p(i)), which gives permutation {3,1,2} which is listed as the 3rd one in A060117, thus A(2,1) = 3.
		

Crossrefs

Transpose: A261217.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A261218.
Column 1: A004442.
Main diagonal: A261219.
Permutations used in conjugation-formulas: A060119, A060120, A060125, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A060125(A261217(A060125(i),A060125(j))).
A(i,j) = A060126(A261096(A060119(i),A060119(j))).
A(i,j) = A060127(A261097(A060120(i),A060120(j))).

A261099 Main diagonal of A261096.

Original entry on oeis.org

0, 0, 0, 4, 3, 0, 0, 0, 12, 16, 23, 19, 8, 23, 0, 20, 0, 7, 16, 11, 15, 0, 7, 0, 0, 0, 0, 4, 3, 0, 48, 48, 60, 64, 71, 67, 86, 93, 74, 94, 74, 85, 116, 111, 119, 99, 108, 99, 30, 30, 86, 89, 112, 111, 0, 0, 78, 82, 107, 103, 0, 20, 26, 46, 96, 103, 15, 0, 41, 29, 78, 73, 60, 115, 38, 119, 38, 63, 56, 107, 0, 104, 0, 55, 26, 100, 0, 104, 19, 42, 33, 56, 11, 52, 0, 25
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally: main diagonal of A261097.
For permutation p, which has rank n in permutation list A055089 (A195663), a(n) gives the rank of the "square" of that permutation (obtained by composing it with itself as: q(i) = p(p(i))) in the same list. Thus zeros (which mark the identity permutation, with rank 0) occur at positions where the permutations of A055089/A195663 are involutions, listed by A014489.

Crossrefs

Main diagonal of A261096 and A261097.
Cf. A014489 (the positions of zeros).
Cf. also A261219.
Related permutations: A060119, A060126.

Formula

a(n) = A261096(n,n) = A261097(n,n).
By conjugating a similar sequence:
a(n) = A060119(A261219(A060126(n))).

A261219 Main diagonal of A261216: a(n) = A261216(n,n).

Original entry on oeis.org

0, 0, 0, 5, 0, 3, 0, 0, 14, 16, 22, 20, 0, 19, 8, 20, 0, 7, 0, 13, 0, 7, 10, 16, 0, 0, 0, 5, 0, 3, 54, 54, 60, 65, 66, 69, 84, 90, 78, 95, 84, 81, 114, 108, 114, 107, 102, 111, 0, 0, 74, 76, 100, 98, 30, 30, 78, 83, 102, 105, 0, 19, 26, 45, 100, 119, 0, 13, 74, 87, 28, 41, 0, 97, 50, 98, 0, 49, 0, 97, 26, 117, 22, 47, 36, 108, 60, 113, 36, 63, 0, 25, 50, 33, 10, 59, 0, 73, 0, 49, 52
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally: main diagonal of A261217.
For permutation p, which has rank n in permutation list A060117, a(n) gives the rank of the "square" of that permutation (obtained by composing it with itself as: q(i) = p(p(i))) in the same list. Equally, if permutation p has rank n in the order used in list A060118, a(n) gives the rank of the p*p in that same list. Thus zeros (which mark the identity permutation, with rank 0 in both orders) occur at positions where the permutations of A060117 (equally: of A060118) are involutions, listed by A261220.

Crossrefs

Main diagonal of A261216 and A261217.
Cf. A261220 (the positions of zeros).
Cf. also A261099, A089841.
Related permutations: A060119, A060126.

Formula

a(n) = A261216(n,n) = A261217(n,n).
By conjugating a similar sequence:
a(n) = A060126(A261099(A060119(n))).

A261097 Transpose of square array A261096.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 4, 3, 4, 2, 0, 5, 4, 5, 5, 5, 1, 2, 5, 6, 4, 1, 4, 5, 3, 6, 7, 7, 3, 0, 0, 4, 7, 7, 8, 6, 8, 2, 3, 1, 12, 6, 8, 9, 9, 10, 9, 1, 2, 13, 13, 10, 9, 10, 8, 6, 11, 10, 0, 18, 12, 14, 11, 10, 11, 11, 11, 7, 8, 11, 19, 19, 16, 15, 8, 11, 12, 10, 7, 10, 11, 9, 0, 18, 20, 17, 16, 9, 12, 13, 13, 9, 6, 6, 10, 1, 1, 22, 21, 14, 17, 18, 13, 14, 12, 14, 8, 9, 7, 14, 0, 2, 23, 22, 15, 6, 19, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Each row and column is a permutation of A001477. See the comments at A261096.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, 13, ...
   2,  4,  0,  5,  1,  3,  8, 10,  6, 11,  7,  9, 14, ...
   3,  5,  1,  4,  0,  2,  9, 11,  7, 10,  6,  8, 15, ...
   4,  2,  5,  0,  3,  1, 10,  8, 11,  6,  9,  7, 16, ...
   5,  3,  4,  1,  2,  0, 11,  9, 10,  7,  8,  6, 17, ...
   6,  7, 12, 13, 18, 19,  0,  1, 14, 15, 20, 21,  2, ...
   7,  6, 13, 12, 19, 18,  1,  0, 15, 14, 21, 20,  3, ...
   8, 10, 14, 16, 20, 22,  2,  4, 12, 17, 18, 23,  0, ...
   9, 11, 15, 17, 21, 23,  3,  5, 13, 16, 19, 22,  1, ...
  10,  8, 16, 14, 22, 20,  4,  2, 17, 12, 23, 18,  5, ...
  11,  9, 17, 15, 23, 21,  5,  3, 16, 13, 22, 19,  4, ...
  12, 18,  6, 19,  7, 13, 14, 20,  0, 21,  1, 15,  8, ...
  ...
		

Crossrefs

Transpose: A261096.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A004442.
Column 1: A261098.
Main diagonal: A261099.
Cf. also A055089, A195663.
Cf. also A261216, A261217 (similar arrays, but using different orderings of permutations).
Permutations used in conjugation-formulas: A056019, A060119, A060120, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A056019(A261096(A056019(i),A056019(j))).
A(i,j) = A060119(A261217(A060126(i),A060126(j))).
A(i,j) = A060120(A261216(A060127(i),A060127(j))).
Showing 1-10 of 13 results. Next