cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060158 Number of permutations of [n] with 4 sequences.

Original entry on oeis.org

0, 0, 0, 0, 0, 32, 300, 1852, 9576, 45096, 201060, 866324, 3650592, 15154240, 62260380, 253939116, 1030367448, 4165106264, 16790875860, 67553807428, 271383782544, 1089035545968, 4366631897100, 17497971562460, 70086163646280, 280627369334152, 1123357369925700
Offset: 0

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.

Crossrefs

Programs

  • Maple
    n4 := n->2*n-7+(6-n)*2^(n-1)-3^n+4^(n-1); seq(n4(i),i=5..27);
  • Mathematica
    Join[{0, 0}, LinearRecurrence[{13, -67, 175, -244, 172, -48}, {0, 0, 0, 32, 300, 1852}, 25]] (* Jean-François Alcover, Sep 02 2018 *)
  • PARI
    a(n) = { if (n<2, 0, 2*n - 7 + (6 - n)*2^(n - 1) - 3^n + 4^(n - 1)) } \\ Harry J. Smith, Jul 02 2009

Formula

a(n) = 2n - 7 + (6-n)*2^(n-1) - 3^n + 4^(n-1).
G.f.: 4*x^5*(8-29*x+24*x^2)/((1-4*x)*(1-3*x)*(1-2*x)^2*(1-x)^2).

Extensions

Edited by N. J. A. Sloane, Nov 11 2006