cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000486 One half of the number of permutations of [n] such that the differences have 4 runs with the same signs.

Original entry on oeis.org

16, 150, 926, 4788, 22548, 100530, 433162, 1825296, 7577120, 31130190, 126969558, 515183724, 2082553132, 8395437930, 33776903714, 135691891272, 544517772984, 2183315948550, 8748985781230, 35043081823140, 140313684667076
Offset: 5

Views

Author

Keywords

Examples

			a(5)=16 because the permutations of [5] with four sign runs are 13254, 14253, 14352, 15342, 15243, 21435, 21534, 23154, 24153, 25143, 31425, 31524, 32415, 32514, 41325, 42315 and their reversals.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #13
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = T(n, 4), where T(n, k) is the array defined in A008970.
Equals 1/2 * A060158(n).

Programs

  • Mathematica
    CoefficientList[Series[2 (24 x^2 - 29 x + 8)/((x - 1)^2 (2 x - 1)^2 (3 x - 1) (4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -48,172,-244,175,-67,13]^(n-5)*[16;150;926;4788;22548;100530])[1,1] \\ Charles R Greathouse IV, Jun 23 2020

Formula

Limit_{n->infinity} 8*a(n)/4^n = 1. - Philippe Deléham, Feb 22 2004
G.f.: 2*x^5*(24*x^2-29*x+8) / ((x-1)^2*(2*x-1)^2*(3*x-1)*(4*x-1)). - Colin Barker, Dec 21 2012

Extensions

Edited by Emeric Deutsch, Feb 18 2004

A060157 Number of permutations of [n] with 3 sequences.

Original entry on oeis.org

0, 10, 58, 236, 836, 2766, 8814, 27472, 84472, 257522, 780770, 2358708, 7108908, 21392278, 64307926, 193185944, 580082144, 1741295034, 5225982282, 15682141180, 47054812180, 141181213790, 423577195838, 1270798696416, 3812530307016, 11437859356546, 34314114940594
Offset: 3

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001

Keywords

Examples

			a(4)=10 because each of the 5 (=A000111(4)) up-down permutations and 5 down-up permutations has 3 sequences. For example, the 3 sequences of 2413 are 24, 41, and 13. - _Emeric Deutsch_, Jul 11 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.

Crossrefs

Cf. A000111. - Emeric Deutsch, Jul 11 2009

Programs

  • Maple
    n3 := n->11/2-n-2^(n+1)+1/2*3^n; seq(n3(i),i=3..30);
  • Mathematica
    Table[11/2-n-2^(n+1)+3^n/2,{n,3,30}]
  • PARI
    a(n) = { (3^n + 11)/2 - 2^(n + 1) - n } \\ Harry J. Smith, Jul 02 2009

Formula

a(n) = 11/2 - n - 2^(n+1) + (1/2)*3^n.
G.f.: 2*x^4*(5-6*x)/((1-x)^2*(1-2*x)*(1-3*x)). - Colin Barker, Feb 17 2012

A123003 Expansion of g.f.: (8-29*x+24*x^2)/((1-4*x)*(1-3*x)*(1-2*x)^2*(1-x)^2).

Original entry on oeis.org

8, 75, 463, 2394, 11274, 50265, 216581, 912648, 3788560, 15565095, 63484779, 257591862, 1041276566, 4197718965, 16888451857, 67845945636, 272258886492, 1091657974275, 4374492890615, 17521540911570, 70156842333538, 280839342481425, 1123993155149853
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2006

Keywords

Crossrefs

Programs

  • Magma
    [(2*n + 3 - (n-1)*2^(n+4) - 3^(n+5) + 4^(n+4))/4: n in [0..30]];  // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    LinearRecurrence[{13, -67, 175, -244, 172, -48}, {8, 75, 463, 2394, 11274, 50265}, 23] (* Jean-François Alcover, Oct 08 2018 *)
  • Sage
    [(2*n + 3 - (n-1)*2^(n+4) - 3^(n+5) + 4^(n+4))/4 for n in [0..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = (2*(n+1) + 1 - 16*(n-1)*2^n - 243*3^n + 64*4^(n+1))/4. - Greg Dresden, Jun 21 2021
Showing 1-3 of 3 results.