cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060184 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 0, -1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 1, -2, 0, 1, 3, 1, 5, 6, 0, 0, -1, -1, 2, 1, 5, 5, -2, 0, -2, -3, 2, 2, 9, 10, 0, 1, 4, 3, 0, 4, 0, 2, 9, 9, -3, 1, 3, -2, -7, 2, 0, 3, 14, 16, 0, 2, 6, -1, -9, 2, 0, 3, 15, 17, -2, 1, 8, 19, 10, -6, 4, 0, -1, 0, 15, 22, 0, 1, 9, 21, 7, -13, 2, 0, -2, -4, 11, 20, -4, 2, 15, 33, 14, -15, 3, 0, -4, -10, 10, 28, 0, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  0  2 -1  2  0  2 -2  3  0  2 ...
        1  0  1  2  1  1  1  6 -1 ...
              1  0  1  0  5 -1  5 ...
		

Crossrefs

Programs

  • Mathematica
    max = 27(*rows*); t[n_, k_] := Module[{m, mm, q, s}, mm = Array[m, k]; s = Sum[q^Total[mm]/Times @@ (1+q^mm), Evaluate[Sequence @@ Transpose[{mm, Join[{1}, Most[mm]+1], max-Range[k-1, 0, -1]}]]]; SeriesCoefficient[s, {q, 0, n}]]; Table[Print[an = Table[t[n, k], {k, Floor[(Sqrt[8*n+1]-1)/2], 1, -1}]]; an, {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 21 2014 *)

Formula

G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Vladeta Jovovic, Sep 20 2007