cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060224 Number of orbits of length n under the map whose periodic points are counted by A047863.

Original entry on oeis.org

2, 2, 8, 39, 288, 3046, 47232, 1061100, 34385064, 1601137110, 106806380544, 10186152828755, 1386394018652160, 268976332493883474, 74301040560350828856, 29201332000320392849280, 16315436194909017151242240, 12952804290011844088808158188, 14603450579455204338154338779136
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Examples

			a(5)=288 since the 6th term of A047863 is 1442 and the 2nd term is 2, so there must be (1442-2)/5 = 288 orbits of length 5.
		

Crossrefs

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    A060224:= func< n | (&+[MoebiusMu(d)*A047863(Floor(n/d)): d in Divisors(n)])/n >;
    [A060224(n): n in [1..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    A047863[n_]:= A047863[n]= Sum[Binomial[n,k]*2^(k*(n-k)), {k,0,n}];
    A060224[n_]:= DivisorSum[n, MoebiusMu[#]*A047863[n/#] &]/n;
    Table[A060224[n], {n,40}] (* G. C. Greubel, Nov 03 2024 *)
  • PARI
    a047863(n) = n!*polcoeff(sum(k=0, n, exp(2^k*x +x*O(x^n))*x^k/k!), n);
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a047863(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    def A060224(n): return sum(moebius(k)*A047863(n//k) for k in (1..n) if (k).divides(n))//n
    [A060224(n) for n in range(1,41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A047863(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017