cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060298 Number of powers x^y (x,y > 1) with n digits.

Original entry on oeis.org

3, 12, 34, 94, 263, 768, 2333, 7167, 22291, 69751, 219081, 689736, 2174856, 6864354, 21679391, 68497906, 216485583, 684323923, 2163459803, 6840258025, 21628220224, 68388917596, 216252901472, 683826283482, 2162393925204, 6837972506895, 21623315009817
Offset: 1

Views

Author

Michel ten Voorde, Apr 10 2001

Keywords

Comments

Conjectures from Robert G. Wilson v, Aug 29 2012: (Start)
Limit_{n->oo} a(2n)/10^n = 1 - 1/sqrt(10).
Limit_{n->oo} a(2n-1)/10^n = 1/sqrt(10) - 1/10. (End)
These follow from the Formula. - Robert Israel, Apr 29 2020
Limit_{n->oo} a(n)/a(n-1) = sqrt(10). - Bernard Schott, Jan 21 2023

Examples

			a(1) = 3 because there are 3 powers with 1 digit: 2^2, 2^3 and 3^2.
		

Crossrefs

Cf. A001597, A089580 (partial sums).

Programs

  • Maple
    f:= proc(n) local y;
      add(ceil(10^(n/y))-ceil(10^((n-1)/y)), y=2..floor(n*log[2](10)))
    end proc:
    f(1):= 3:
    map(f, [$1..20]); # Robert Israel, Apr 29 2020
  • Python
    # see link
    
  • Python
    from sympy import integer_nthroot, integer_log
    def A060298(n):
        if n == 1: return 3
        c, y, a, b, t = 0, 2, 10**n-1, 10**(n-1)-1, (10**n).bit_length()
        while yChai Wah Wu, Oct 16 2023

Formula

a(n) = Sum_{y=2..floor(n*log_2(10))} (ceiling(10^(n/y)) - ceiling(10^((n-1)/y))) for n >= 2. - Robert Israel, Apr 29 2020
a(n) = A089580(n+1) - A089580(n) for n > 1. - Karl-Heinz Hofmann, Sep 18 2023

Extensions

a(10)-a(18) from Donovan Johnson, Dec 14 2009
a(19)-a(27) from Donovan Johnson, Aug 29 2012