cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A130639 Number of degree-2n permutations without even cycles and such that number of cycles of size 2k-1 is even (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 41, 1121, 80977, 5073377, 984765497, 131026429249, 45819745767329, 9199822716980033, 5303459200225973833, 1646226697154555000993, 1377111876294420026771441, 574027598120143165861124641, 675477754387947155701063431257, 381022545331716847279242552317057
Offset: 0

Views

Author

Vladeta Jovovic, Aug 11 2007

Keywords

Examples

			a(2)=1 because we have (1)(2)(3)(4).
		

Crossrefs

Cf. A060307.

Programs

  • Maple
    g:=product(cosh(x^(2*k-1)/(2*k-1)),k=1..40): gser:=series(g,x=0,35): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..14); # Emeric Deutsch, Aug 25 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=1 and irem(j, 2)=0, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 && Mod[j, 2] == 0, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

E.g.f.: Product_{k>0} cosh(x^(2*k-1)/(2*k-1)).

Extensions

More terms from Emeric Deutsch, Aug 25 2007

A130644 Number of degree-2n permutations without odd cycles and such that number of cycles of size 2k is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 6, 225, 8400, 760725, 91725480, 15563633085, 3381661483200, 1015992072520425, 360153767651277600, 160068908768727783825, 84298688029883001074400, 53051020433282263735468125, 38316864396320965168213500000, 32660810942813910822645908353125
Offset: 0

Views

Author

Vladeta Jovovic, Aug 11 2007

Keywords

Examples

			a(2)=6 because we have (1234),(1243),(1324),(1342),(1423) and (1432).
		

Crossrefs

Cf. A060307.

Programs

  • Maple
    g:=product(1+sinh(x^(2*k)/(2*k)),k=1..50): gser:=series(g,x=0,44): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..14); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 and irem(j, 2)=1, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 && Mod[j, 2] == 1, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

E.g.f.: Product_{k>0} (1+sinh(x^(2*k)/(2*k))).

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A130648 Number of degree-n permutations without even cycles and such that number of cycles of size 2k-1 is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 0, 3, 8, 25, 184, 721, 9904, 66753, 691088, 5973121, 84925048, 940427137, 12801319816, 186556383105, 3174772979936, 48489077948161, 842173637012896, 15359492773456129, 316965131969908072, 6368424993521096961, 135098381153771956952, 2980219360336428021505
Offset: 0

Views

Author

Vladeta Jovovic, Aug 11 2007

Keywords

Examples

			a(3)=3 because we have (1)(2)(3), (123) and (132).
		

Crossrefs

Cf. A060307.

Programs

  • Maple
    g:=product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30): gser:=series(g,x=0,27): seq(factorial(n)*coeff(gser,x,n),n=0..24); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=1 and irem(j, 2)=1, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 && Mod[j, 2] == 1, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

E.g.f.: Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1))).

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A131526 Number of degree-n permutations such that number of cycles of size 2k is even (or zero) and number of cycles of size 2k-1 is odd (or zero), for every k.

Original entry on oeis.org

1, 1, 0, 3, 11, 40, 184, 1036, 12949, 88488, 807008, 7362586, 113572183, 1238477032, 15630890560, 228998728050, 4141605806441, 62222251093216, 1030119451142656, 19050688698470434, 412037845709792107, 8102391640556570616, 165794307361686866432
Offset: 0

Views

Author

Vladeta Jovovic, Aug 25 2007

Keywords

Examples

			a(4)=11 because we have (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3), (143)(2), (12)(34), (13)(24) and (14)(23).
		

Crossrefs

Programs

  • Maple
    g:=(product(1+sinh(x^(2*k-1)/(2*k-1)), k=1..40))*(product(cosh(x^(2*k)/(2*k)), k=1..40)): gser:=series(g,x=0,25); seq(factorial(n)*coeff(gser,x,n),n=0..21); # Emeric Deutsch, Aug 28 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i+j, 2)=0, multinomial(n, n-i*j, i$j)*
           (i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i + j, 2] == 0, multinomial[n, {n - i j} ~Join~ Table[i, {j}]] (i - 1)!^j/j! b[n - i j, i - 1], 0], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)

Formula

E.g.f.: Product(1+sinh(x^(2*k-1)/(2*k-1)), k=1..infinity) *Product(cosh(x^(2*k)/(2*k)), k=1..infinity).

Extensions

More terms from Emeric Deutsch, Aug 28 2007
Showing 1-4 of 4 results.