cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060330 Primes that are the sum of five consecutive composite numbers.

Original entry on oeis.org

37, 53, 67, 83, 97, 157, 293, 307, 353, 367, 503, 547, 683, 743, 757, 907, 953, 967, 983, 997, 1193, 1553, 1567, 1733, 1747, 2153, 2617, 2843, 2857, 3083, 3203, 3217, 3307, 4057, 4133, 4283, 4297, 5107, 5153, 5167, 5303, 6143, 6397, 6607, 7253, 7417
Offset: 1

Views

Author

Robert G. Wilson v, Mar 30 2001

Keywords

Comments

Conjecture: all these primes are isolated primes (A007510). - Davide Rotondo, Dec 31 2024
Stronger conjecture: all p are 7 or 23 mod 30. - Charles R Greathouse IV, Jan 21 2025
Above conjectures are true. Proof sketch: n + n+1 + n+2 + n+3 + n+4 = 5n+10, so there must be at least one prime sandwiched between the five composite numbers. If p and p+4 are prime, then p-1 + p+1 + p+2 + p+3 + p+5 = 5p + 10 is composite. If neither p-2 nor p+2 are prime, the sums p-4 + p-3 + p-2 + p-1 + p+1, etc., are 5p-9, 5p-3, 5p+3, and 5p+9 which are even for p > 2 (and p = 2 does not work). So we must have p and p+2 prime, which yield p-3 + p-2 + p-1 + p+1 + p+3 = 5p-2, p-2 + p-1 + p+1 + p+3 + p+4 = 5p+5, and p-1 + p+1 + p+3 + p+4 + p+5 = 5p+12. 5p+5 is composite, but the others can work. Now note that the first form yields only 5p-2 = 23 mod 30 and the second 5p+12 = 7 mod 30. - Charles R Greathouse IV, Jan 23 2025

Crossrefs

Subsequence of A007510.

Programs

  • Mathematica
    composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k - PrimePi[ k ] - 1 != n, k++ ]; k); a = {}; Do[ p = composite[ n ] + composite[ n + 1 ] + composite[ n + 2 ] + composite[ n + 3 ] + composite[ n + 4 ]; If[ PrimeQ[ p ], a = Append[ a, p ] ], {n, 1, 1500} ]; a
  • PARI
    list(lim)=my(v=List(), u=[4, 6, 8, 9, 0], i=5); forcomposite(n=10, lim\1, u[i]=n; if(i++>5, i=1); my(p=vecsum(u)); if(p>lim, break); if(isprime(p), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Dec 27 2024
    
  • PARI
    ok(p)=p=p%30; p==11 || p==17 || p==29
    list(lim)=my(v=List([37]),p=11); forprime(q=13, (lim+12)\5, if(q-p>2 || !ok(p), p=q; next); if(isprime(5*p-2), listput(v,5*p-2)); if(isprime(5*p+12), listput(v,5*p+12)); p=q); if(v[#v]>lim, listpop(v)); Vec(v) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) >> n log^3 n. - Charles R Greathouse IV, Jan 23 2025