cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060392 Let f(m) = smallest prime that divides k^2 + k + m for k = 0,1,2,...; sequence gives smallest m >= 0 such that f(m) is the n-th prime.

Original entry on oeis.org

0, 1, 5, 47, 11, 221, 17, 1217, 941, 2747, 8081, 9281, 41, 55661, 19421, 333491, 1262201, 601037, 5237651, 9063641, 12899891, 26149427, 24073871, 28537121, 352031501, 398878547, 160834691, 67374467, 146452961, 24169417397
Offset: 1

Views

Author

Luis Rodriguez-Torres (ludovicusmagister(AT)yahoo.com), Apr 03 2001

Keywords

Comments

Chris Nash (see the Prime Puzzles link) has shown that such an m always exists.
For n>1, least odd number d such that the Legendre symbol (1-4d/prime(k)) = -1 for k = 2,...,n, but not for n+1. - T. D. Noe, Apr 19 2004

Examples

			k^2 + k takes the values 0, 2, 6, 12, ... for k = 0,1,2,...; the smallest prime divisor of these numbers is 2, so f(0) = 2.
		

References

  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082

Crossrefs

Cf. A060380, A060393-A060398. A060394 gives associated values of k.

Programs

  • Mathematica
    nn=20; a=Table[0, {nn}]; d=-1; While[Length[Select[a, # == 0&]] != 1, d=d+2; i=2; While[JacobiSymbol[1-4d, Prime[i]]==-1, i++ ]; If[i<=nn && a[[i]]==0, a[[i]]=d]]; a (* corrected by Jean-François Alcover, Feb 06 2019 *)
  • PARI
    lista(nn) = {va = vector(nn); d = -1; while (#select(x->(x==0), va) != 1, d += 2; i = 2; while(kronecker(1-4*d, prime(i)) == -1, i++); if ((i <= nn) && (va[i] == 0), va[i] = d);); va;} \\ Michel Marcus, Feb 05 2019

Extensions

Corrected by T. D. Noe, Apr 19 2004