cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060404 G.f.: Sum_{k >= 1} (phi(k)/k)*log(1-f(x^k)), where f(x) = (1 - sqrt(1 - 4*x)) / (2*x) - 1 is the g.f. for the Catalan numbers (A000108) C_1, C_2, C_3, ...

Original entry on oeis.org

0, 1, 3, 8, 25, 78, 270, 926, 3305, 11868, 43232, 158586, 586530, 2181088, 8154710, 30620868, 115435625, 436654794, 1656793374, 6303490610, 24041649128, 91899730068, 352002058402, 1350767683698, 5192237233602, 19989786008160
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2001

Keywords

Comments

Counts cycles of objects where the individual objects are anything enumerated by the Catalan numbers C_1, C_2, ...
The number of unrooted two-face n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Cf. A103943.

Programs

  • Mathematica
    max = 25; f[x_] := (1 - Sqrt[1 - 4*x])/(2*x) - 1; gf = Sum[(EulerPhi[k]/k)*Log[1 - f[x^k]], {k, 1, max}]; CoefficientList[ Series[-gf, {x, 0, max}], x] (* Jean-François Alcover, Jan 21 2013 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(2^(2*d-1) - binomial(2*d-1, d)))/n; \\ Andrew Howroyd, Apr 02 2017

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A000346(d-1) for n>0. - Andrew Howroyd, Apr 02 2017