A060426 a(n) is the number of degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n that appear only once.
1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 4, 4, 5, 5, 4, 6, 8, 8, 6, 7, 10, 11, 11, 15, 15, 16, 18, 21, 22, 23, 29, 33, 31, 31, 39, 43, 44, 52, 51, 58, 64, 71, 66, 82, 88, 96, 93, 103, 115, 128, 143, 150, 156, 160, 173, 199, 202, 202, 242, 263, 269, 293, 308
Offset: 1
Keywords
Examples
a(6) = 1 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and the only number that appears once is 16.
Crossrefs
Programs
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := a[n] = If[n == 1, 1, Count[Tally[g[n, n, {}]], {_, 1}] ]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
-
Sage
def A060426(n) : mult = {} for P in Partitions(n) : dim = P.dimension() mult[dim] = mult.get(dim, 0) + 1 return len([m for m in iter(mult) if mult[m]==1]) # Eric M. Schmidt, Apr 29 2013
Extensions
More terms from Eric M. Schmidt, Apr 29 2013
Comments