cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060446 Number of ways to color vertices of a pentagon using <= n colors, allowing rotations and reflections.

Original entry on oeis.org

0, 1, 8, 39, 136, 377, 888, 1855, 3536, 6273, 10504, 16775, 25752, 38233, 55160, 77631, 106912, 144449, 191880, 251047, 324008, 413049, 520696, 649727, 803184, 984385, 1196936, 1444743, 1732024, 2063321, 2443512, 2877823
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2001

Keywords

Comments

a(n) is also the number of 5-cycles in the (n+4)-path complement graph, - Eric W. Weisstein, Apr 11 2018

Crossrefs

Cf. A054620.
Cf. A000292 (3-cycle count of \bar P_{n+4}), A002817 (4-cycle count of \bar P_{n+4}), A302695 (6-cycle count of \bar P_{n+5}).

Programs

  • Mathematica
    Table[n (n^2 + 1) (n^2 + 4)/10, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 39, 136, 377, 888}, {0, 20}] (* Eric W. Weisstein, Apr 11 2018 *)
    CoefficientList[Series[x (1 + 2 x + 6 x^2 + 2 x^3 + x^4)/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
  • PARI
    for (n=0, 1000, write("b060446.txt", n, " ", (n^5 + 5*n^3 + 4*n)/10); ) \\ Harry J. Smith, Jul 05 2009

Formula

a(n) = (n^5+5*n^3+4*n)/10.
G.f.: x*(1+2*x+6*x^2+2*x^3+x^4)/(1-x)^6. - Colin Barker, Jan 29 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Apr 11 2018