A060446 Number of ways to color vertices of a pentagon using <= n colors, allowing rotations and reflections.
0, 1, 8, 39, 136, 377, 888, 1855, 3536, 6273, 10504, 16775, 25752, 38233, 55160, 77631, 106912, 144449, 191880, 251047, 324008, 413049, 520696, 649727, 803184, 984385, 1196936, 1444743, 1732024, 2063321, 2443512, 2877823
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
Table[n (n^2 + 1) (n^2 + 4)/10, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 39, 136, 377, 888}, {0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) CoefficientList[Series[x (1 + 2 x + 6 x^2 + 2 x^3 + x^4)/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
-
PARI
for (n=0, 1000, write("b060446.txt", n, " ", (n^5 + 5*n^3 + 4*n)/10); ) \\ Harry J. Smith, Jul 05 2009
Formula
a(n) = (n^5+5*n^3+4*n)/10.
G.f.: x*(1+2*x+6*x^2+2*x^3+x^4)/(1-x)^6. - Colin Barker, Jan 29 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Apr 11 2018
Comments