cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060457 Number of solutions to y^2 + y = x^3 - x^2 modulo n.

Original entry on oeis.org

1, 4, 4, 8, 4, 16, 9, 16, 12, 16, 10, 32, 9, 36, 16, 32, 19, 48, 19, 32, 36, 40, 24, 64, 20, 36, 36, 72, 29, 64, 24, 64, 40, 76, 36, 96, 34, 76, 36, 64, 49, 144, 49, 80, 48, 96, 39, 128, 63, 80, 76, 72, 59, 144, 40, 144, 76, 116, 54, 128, 49, 96, 108, 128, 36, 160, 74
Offset: 1

Views

Author

Frank Ellermann, Apr 09 2001

Keywords

Comments

Singh mistakenly called this the L-series, but the L-series for elliptic curve y^2 + y = x^3 - x^2 is A006571. - Michael Somos, Mar 20 2010

Examples

			a(5)=4 from the 4 solutions (0,0), (0,4), (1,0), (1,4) mod 5.
G.f. = x + 4*x^2 + 4*x^3 + 8*x^4 + 4*x^5 + 16*x^6 + 9*x^7 + 16*x^8 + 12*x^9 + ...
		

References

  • Simon Singh, Fermat's last theorem, 1997 (at the end of ch. 4).

Crossrefs

Programs

  • PARI
    {a(n) = sum(x=0, n-1, sum(y=0, n-1, (y^2 + y - x^3 + x^2) % n == 0))}; /* Michael Somos, Mar 20 2010 */
    
  • PARI
    {a(n) = local(E, A, p, e); if(n<1, 0, E = ellinit( [0, -1, 1, 0, 0], 1); A = factor(n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (p - ellap(E, p)) * p^(e-1) )))}; /* Michael Somos, Mar 20 2010 */

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2001