A060457 Number of solutions to y^2 + y = x^3 - x^2 modulo n.
1, 4, 4, 8, 4, 16, 9, 16, 12, 16, 10, 32, 9, 36, 16, 32, 19, 48, 19, 32, 36, 40, 24, 64, 20, 36, 36, 72, 29, 64, 24, 64, 40, 76, 36, 96, 34, 76, 36, 64, 49, 144, 49, 80, 48, 96, 39, 128, 63, 80, 76, 72, 59, 144, 40, 144, 76, 116, 54, 128, 49, 96, 108, 128, 36, 160, 74
Offset: 1
Examples
a(5)=4 from the 4 solutions (0,0), (0,4), (1,0), (1,4) mod 5. G.f. = x + 4*x^2 + 4*x^3 + 8*x^4 + 4*x^5 + 16*x^6 + 9*x^7 + 16*x^8 + 12*x^9 + ...
References
- Simon Singh, Fermat's last theorem, 1997 (at the end of ch. 4).
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
Programs
-
PARI
{a(n) = sum(x=0, n-1, sum(y=0, n-1, (y^2 + y - x^3 + x^2) % n == 0))}; /* Michael Somos, Mar 20 2010 */
-
PARI
{a(n) = local(E, A, p, e); if(n<1, 0, E = ellinit( [0, -1, 1, 0, 0], 1); A = factor(n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (p - ellap(E, p)) * p^(e-1) )))}; /* Michael Somos, Mar 20 2010 */
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2001
Comments