A060466 Value of y of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.
0, 0, 1, 1, -1, -1, 0, 1, 1, -2, 10, 2, -1609, 2, -2, -2, -2, -14, -15550555555, -1, -1, 0, 1, 1, -2218888517, -8778405442862239, 2, 2, 2, -3, -3, 134476, 80435758145817515, 2, -7, -3, 3, 7, -26, 659, 60702901317, 3, -11, 3, -21, -2, -4, -4, 3, -1, 0, 1, 1, -4, 20, 2, 9, 2
Offset: 0
Examples
For n = 16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -1609. 42 = 12602123297335631^3 + 80435758145817515^3 + (-80538738812075974)^3 was found by Andrew Booker and Andrew Sutherland. 74 = 66229832190556^3 + 283450105697727^3 + (-284650292555885)^3 was found by Sander Huisman.
References
- R. K. Guy, Unsolved Problems in Number Theory, Section D5.
Links
- A. Bogomolny, Finicky Diophantine Equations on cut-the-knot.org, accessed Nov. 10, 2015.
- A.-S. Elsenhans, J. Jahnel, New sums of three cubes, Math. Comp. 78 (2009) 1227-1230.
- K. Koyama, Y. Tsuruoka, H. Sekigawa, On searching for solutions of the Diophantine equation x^3+y^3+z^3=n, Math. Comp. 66 (1997) 841.
- Hisanori Mishima, About n=x^3+y^3+z^3
- Eric S. Rowland, Known families of integer solutions of x^3+y^3+z^3=n
- A. Tyszka, A hypothetical upper bound for the solutions of a Diophantine equation with a finite number of solutions, arXiv:0901.2093 [math.NT], 2009-2014.
Programs
-
Mathematica
nmax = 29; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = {0, 0, 0, 1, -1, 0, 0, 0, 1, -2, 7, -1, -511, 1, -1, 0, 1, -11, -2901096694, -1, 0, 0, 0, 1}; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; A060466 = Table[y /. ToRules[ Simplify[ r[A060464[[k]], A060465[[k]]] /. C[1] -> 0]], {k, 1, Length[A060464]}] (* Jean-François Alcover, Jul 11 2012 *)
Extensions
In order to be consistent with A060465, where only primitive solutions are selected, a(18)=2 was replaced with -15550555555, by Jean-François Alcover, Jul 11 2012
Edited and a(24) added by M. F. Hasler, Nov 10 2015
a(25) from Tim Browning and further terms added by Charlie Neder, Mar 09 2019
More terms from Jinyuan Wang, Feb 14 2020
Comments