A060478 Number of orbits of length n in map whose periodic points are A059928.
1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 12, 56, 0, 0, 0, 72, 0, 0, 24, 0, 0, 96, 24, 0, 48, 0, 0, 33, 270, 136, 0, 144, 18, 0, 0, 160, 0, 168, 0, 696, 96, 0, 48, 0, 3726, 1752, 0, 208, 96, 1896, 52, 216, 0, 0, 60, 28512, 1120, 2208, 16896, 0, 0, 0, 35904, 1080, 594, 1112, 12096
Offset: 1
References
- G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
Links
- Manfred Einsiedler, Graham Everest and Thomas Ward, Primes in sequences associated to polynomials (after Lehmer), LMS J. Comput. Math. 3 (2000), 125-139.
- G. Everest and T. Ward, Primes in Divisibility Sequences, Cubo Matematica Educacional (2001), 3 (2), pp. 245-259.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Crossrefs
Cf. A059928.
Programs
-
PARI
comp(pol) = my(v=Vec(pol), nn=poldegree(pol)); matrix(nn, nn, n, k, if (k==nn, -v[n], if(k==n-1, 1))); id(nn) = matrix(nn, nn, n, k, n==k); b(n) = my(p=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, m=comp(p)); abs(matdet(m^n-id(poldegree(p)))); \\ A059928 a(n) = sumdiv(n, d, moebius(d)*b(n/d))/n; \\ Michel Marcus, Nov 23 2022
Formula
a(n) = (1/n) * Sum_{ d divides n } mu(d) * A059928(n/d).
Extensions
More terms from T. D. Noe, Sep 15 2003