A060533 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 3 labeled nodes.
1, 3, 0, 3, 9, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, 1266, 1317, 1369, 1422
Offset: 0
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Vladeta Jovovic, Generating functions for homeomorphically irreducible multigraphs on n labeled nodes.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
i=5;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
-
PARI
Vec((3*x^7-7*x^6+6*x^5+3*x^4-11*x^3+6*x^2-1)/(x-1)^3 + O(x^60)) \\ Colin Barker, Nov 10 2016
Formula
G.f.: (3*x^7 - 7*x^6 + 6*x^5 + 3*x^4 - 11*x^3 + 6*x^2 - 1)/(x - 1)^3.
E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Colin Barker, Nov 10 2016: (Start)
a(n) = (1 + n)*(2 + n)/2 - 9 for n>4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7. (End)
Sum_{n>=3} 1/a(n) = 1/72 + 2*tan(sqrt(73)*Pi/2)*Pi/sqrt(73). - Amiram Eldar, Jan 08 2023