cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060533 Number of homeomorphically irreducible multigraphs (or series-reduced multigraphs or multigraphs without nodes of degree 2) on 3 labeled nodes.

Original entry on oeis.org

1, 3, 0, 3, 9, 12, 19, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 369, 397, 426, 456, 487, 519, 552, 586, 621, 657, 694, 732, 771, 811, 852, 894, 937, 981, 1026, 1072, 1119, 1167, 1216, 1266, 1317, 1369, 1422
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

  • Mathematica
    i=5;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
  • PARI
    Vec((3*x^7-7*x^6+6*x^5+3*x^4-11*x^3+6*x^2-1)/(x-1)^3 + O(x^60)) \\ Colin Barker, Nov 10 2016

Formula

G.f.: (3*x^7 - 7*x^6 + 6*x^5 + 3*x^4 - 11*x^3 + 6*x^2 - 1)/(x - 1)^3.
E.g.f. for homeomorphically irreducible multigraphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp(x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
From Colin Barker, Nov 10 2016: (Start)
a(n) = (1 + n)*(2 + n)/2 - 9 for n>4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7. (End)
Sum_{n>=3} 1/a(n) = 1/72 + 2*tan(sqrt(73)*Pi/2)*Pi/sqrt(73). - Amiram Eldar, Jan 08 2023