A060540 Square array read by antidiagonals downwards: T(n,k) = (n*k)!/(k!^n*n!), (n>=1, k>=1), the number of ways of dividing nk labeled items into n unlabeled boxes with k items in each box.
1, 1, 1, 1, 3, 1, 1, 10, 15, 1, 1, 35, 280, 105, 1, 1, 126, 5775, 15400, 945, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1, 6435, 66512160, 96197645544, 5194672859376, 4509264634875, 36212176000, 2027025, 1
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, ... 1, 3, 10, 35, 126, 462, ... 1, 15, 280, 5775, 126126, 2858856, ... 1, 105, 15400, 2627625, 488864376, 96197645544, ... 1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ... ...
Links
- Seiichi Manyama, Antidiagonals n = 1..50, flattened (first 20 antidiagonals from Harry J. Smith)
- Tom Copeland, Calculus, Combinatorics, and Geometry Underlying OEIS A060540, and the Exponential Formula, 2021.
- Nattawut Phetmak and Jittat Fakcharoenphol, Uniformly Generating Derangements with Fixed Number of Cycles in Polynomial Time, Thai J. Math. (2023) Vol. 21, No. 4, 899-915. See pp. 901, 914.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 13.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := (n*k)!/(k!^n*n!); Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
-
PARI
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009
Formula
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014
Extensions
Definition reworded by M. F. Hasler, Aug 23 2014
Comments