cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060557 Row sums of triangle A060556.

Original entry on oeis.org

1, 3, 10, 33, 108, 352, 1145, 3721, 12087, 39254, 127469, 413908, 1343980, 4363921, 14169633, 46008619, 149389218, 485064009, 1574993356, 5113971944, 16604963593, 53915979657, 175064088671
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

Equals the INVERT transform of A045623: (1, 2, 5, 12, 28, ...). - Gary W. Adamson, Oct 26 2010

Crossrefs

a(n)=A028495(2n+1).
Cf. A053975.
Cf. A052975 (row sums of triangle A060102).
Cf. A045623. - Gary W. Adamson, Oct 26 2010

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; a[2] = 10; a[n_] := a[n] = 5*a[n-1] - 6*a[n-2] + a[n-3]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 05 2013, after Floor van Lamoen *)
    LinearRecurrence[{5,-6,1},{1,3,10},30] (* Harvey P. Dale, Nov 29 2013 *)
  • PARI
    { f="b060557.txt"; a0=1; a1=3; a2=10; write(f, "0 1"); write(f, "1 3"); write(f, "2 10"); for (n=3, 500, write(f, n, " ", a=5*a2 - 6*a1 + a0); a0=a1; a1=a2; a2=a; ) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = Sum_{m=0..n} A060556(n, m).
G.f.: (1-x)^2/(1 - 5*x + 6*x^2 - x^3).
a(n) = 5a(n-1) - 6a(n-2) + a(n-3). - Floor van Lamoen, Nov 02 2005