A060682 Number of distinct differences between consecutive divisors of n (ordered by size).
1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 3, 1, 4, 3, 3, 1, 4, 2, 3, 3, 5, 1, 5, 1, 5, 3, 3, 3, 5, 1, 3, 3, 5, 1, 4, 1, 5, 4, 3, 1, 5, 2, 5, 3, 5, 1, 4, 3, 6, 3, 3, 1, 7, 1, 3, 4, 6, 3, 5, 1, 5, 3, 6, 1, 6, 1, 3, 3, 5, 3, 5, 1, 7, 4, 3, 1, 6, 3, 3, 3, 7, 1, 7, 2, 5, 3, 3, 3, 6, 1, 5, 4, 6, 1, 5, 1, 7, 5, 3
Offset: 2
Keywords
Examples
For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; a(70) = number of distinct differences = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
- A. Balog, P. Erdős and G. Tenenbaum, On Arithmetic Functions Involving Consecutive Divisors, In: Analytical Number Theory, pp. 77-90, Birkhäuser, Basel, 1990.
- Jason Earls, Smarandache iterations of the first kind on functions involving divisors and prime factors, in Smarandache Notions Journal (2004), Vol. 14.1, page 264.
Programs
-
Haskell
import Data.List (nub, genericLength) a060682 = genericLength . nub . a193829_row -- Reinhard Zumkeller, Jun 25 2015
-
Mathematica
a[n_ ] := Length[Union[Drop[d=Divisors[n], 1]-Drop[d, -1]]]
-
PARI
a(n) = my(d=divisors(n)); #vecsort(vector(#d-1, k, d[k+1] - d[k]),,8); \\ Michel Marcus, Jul 04 2017
Extensions
Edited by Dean Hickerson, Jan 22 2002
Comments